|
[1]H. Blok, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions”, Journal of Proceedings of the Institute of Mechanical Engineers General Discussion of Lubrication, proc. Inst. Mech. Eng. London, Vol. 2, pp. 222-235 (1937). [2]J. C. Jaeger, “Moving Sources of Heat and the Temperature at Sliding Surfaces”, Journal of Proc. R. Soc. NSW, Vol. 76, pp. 203-224 (1942). [3]J. F. Archard, “The Temperature of Rubbing Surfaces”, Wear, vol. 2, pp. 438-455 (1959). [4]F. F. Ling, “A quasi-iterative Method for Computing Interface Temperature Distributions”, Z. Angew. Math. Phys., Vol. 10, pp. 461-474 (1959). [5]F. E. Kennedy, F. F. Ling, “A Thermal, Thermoelastic, and Wear Simulation of a High-energy Sliding Contact Problem”, Journal of Lubrication Technology, Vol. 96, pp.497-507 (1974). [6]M. A. Tanvir, “Temperature Rise due to Slip between Wheel and Rail—an Analytical Solution for Hertzian Contact”, Wear, Vol. 61, pp.295-308 (1980). [7]B. Geeim, W. O. Winer, “Temperatures in the Vicinity of an Asperity Contact”, Journal of ASME J. Tribology, Vol. 107, pp. 333-342 (1985). [8]S. Wang, K. Komvopoulos, “A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I – Elastic Contact and Heat Transfer Analysis”, Journal of ASME J. Tribology, Vol. 116, pp. 812-822 (1994). [9]X. Tian, F. E. Kennedy, 1994, “Maximum and Average Fiash Temperature in Sliding Contacts”, ASME J. Tribol. 116 (1), 167-174 (1994). [10]K. Knothe, S. Liebelt, “Determination of Temperatures for Sliding Contact with Applications for Wheel-Rail Systems”, Wear, Vol. 189, pp. 91-99 (1995). [11]Z. Q. Gong, K. Komvopoulos, “Thermomechanical Analysis of Semi-infinite Solid in Sliding Contact with a Fractal Surface”, Journal of ASME J. Tribology, Vol. 127, pp. 331-342 (2005). [12]J. F. Lin, “Thermal Analysis of the Transient Temperatures Arising at the Contact Spots of Two Sliding Surfaces”, Journal of ASME J. Tribology, Vol. 127, pp. 694-704 (2005). [13]T. C. Kennedy, C. Plengsaard, R. F. Harder, “Transient Heat Partition Factor for a Sliding Rail wheel”, Wear, Vol. 261, pp. 932-936 (2006). [14]W. W. Chen, Q. J. Wang, W. Kim, “Transient Thermomechanical Analysis of Sliding Electrical Contacts of Elastoplastic Bodies, Thermal Softening, and Melting Inception”, Journal of ASME J. Tribology, Vol. 131 (2009). [15]C. Sara, E. Ander, “ Numerical Evaluation of the Material Response of Railway Wheel under Thermos-Mechanical Braking Condition”, Wear, Vol. 314, pp. 181-186 (2014). [16]F. E. Kennedy, X. Tian, “Modeling Sliding Contact Temperatures, IncludingEffects of Surface Roughnessand Convection”, Journal of Tribology, Vol. 138, pp. 042101-1~9 (2016). [17]F. E. Kennedy, Y. Lu, I. Baker, P. R. Munroe, “The Influence of Sliding Velocity and Third Bodies on the Dry Sliding Wear of Fe30Ni20Mn25Al25 Against AISI 347 Stainless Steel”, Wear, Vol. 374-375, pp. 63-76 (2017). [18]H. Hertz, “Über die Berührung Fester Elastischer Körper”, Journal für die reine und angewandte. Mathematik, Vol. 92, pp. 156-171 (1881). [19]J. Smith, C. K. Liu, “Stresses due to Tangential and Normal Loads on an Elastic Solid with Application to Some Contact Stress Problems,” J. Appl. Mech. ASME, Vol. 20, pp. 157-166 (1953). [20]J. A. Greenwood, B. P. Williamson, “Contact of Nominally Flat Surfaces”, Proceedings of the Royal Society of London, A295, pp. 300-319 (1966). [21]K. L. Johnson, K. Kendall and A. D. Roberts, “Surface Energy and the Contact of Elastic Solids”, Proceedings of the Royal Society of London, A324, pp. 30-313 (1971). [22]N. Ye, K. Komvopoulos, “Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermo-mechanical Surface Loading”, Journal of ASME J. Tribology, Vol. 125, pp. 52-59 (2003). [23]U. Sellgren, S. Andersson, “A Finite Element-Based Model of Normal Contact between Rough Surface”, Wear, Vol. 254, pp. 1180-1188 (2003). [24]M. Bahrami, M. M. Yovanovich, J. R. Culham, “A Compact Model for Spherical Rough Contacts“, Journal of ASME J. Tribology, Vol. 127, pp. 884-889 (2005). [25]R. L. Jackson, J. L. Streator, “A Multi-Scale Model for Contact between Rough Surfaces“, Wear, Vol. 261(11-12), pp.1337-1347 (2006). [26]S. Hasan, O. Alaettin, “Thermomechanical Analysis of Elastoplastic Medium in Sliding Contact with Fractal Surface”, Tribology International, Vol. 41, pp. 783-796 (2008). [27]H. Qiua, D. A. Hillsa, D. Nowella, “Skew Sliding of an Elastic Cylinder: An Investigation of Convection in Contact”, International Journal of Mechanical Sciences, Vol. 50(2), pp.293-298 (2008). [28]P. Sahoo, B. Chatterjee, D. AdhiKary, “Finite Element based Elastic-Plastic Contact Behaviour of a Sphere against a Rigid Flat – Effect of Strain Hardening”, International Journal of Engineering and Technology, Vol.2, pp. 1-6 (2010). [29]A. Megalingam, M. M. Mayuram, Comparative Contact Analysis Study of Finite Element Method Based Deterministic, Simplified Multi-Asperity and Modified Statistical Contact Models, Journal of Tribology, Vol. 134, pp.1-6 (2012). [30]P. T. Zwierczyk, K. Váradi, “Frictional Contact FE Analysis in a Railway Wheel-Rail Contact”, Periodica Polytechnica, Vol.58. (2014) [31]J. M. Huang, C. H. Gao, J. J. Chen, X. Z. Lin and Z. Y. Ren, “Thermomechanical Analysis of an Elastoplastic Rough Body in Sliding Contact with Flat Surface and the Effect of Adjacent Contact Asperity”, Advances in Mechanical Engineering, Vol. 7(5), pp. 1-10 (2015). [32]A. J. Ghajar, Heat and mass transfer : Fundamentals & applications (2011). [33]A. Hrennikoff, “Solution of Problems of Elasticity by the Frame-Work Method”, ASME J. Appl. Mech. 8, A619–A715 (1941). [34]R. Courant, “Variational Methods for the Solution of Problems of Equilibrium and Vibrations”, Bull. Amer. Math. Soc. 49 (1943), No. 1, 1-23. [35]馮康,基於變分原理的差分格式,應用數學與計算數學,2(4):237-261,1965。
|