[1]Ping Chen, Xin Xiang, Tianmin Shao, Yingqian La, Junling Li, 2016 “Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition”, Applied Surface Science. 389, pp. 361-368. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433216315550
[2]K. Bobzin, T. Brögelmann, U.Hartmann, N.C. Kruppe, 2016 “Analysis of CrN/AlN/Al2O3 and two industrially used coatings deposited on die casting cores after application in an aluminumdie castingmachine”, Surface & Coatings Technology. 308, pp. 374-382. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897216309240
[3]E. Lugscheider, C. Barimani, S. Guerreiro, K. Bobzin, 1998 “Corrosion tests of PVD coatings with die lubricant used for Al high-pressure die-casting dies”, Surface and Coatings Technology. 108-109, pp. 408-412. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897298006240
[4]Ildiko Peter, Mario Rosso, Federico Simone Gobber, 2015 “Study of protective coatings for aluminum die casting molds”, Applied Surface Science. 358, pp. 563-571. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433215018103
[5]J. Vega, H. Scheerer, G. Andersohn, M. Oechsner, 2018 “Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods”, Corrosion Science. 133, pp. 240-250. Retrieved from https://www.sciencedirect.com/science/article/pii/S0010938X1731154X
[6]Jia-Hong Huang, Cheng-Hsin Ma, Haydn Chen, 2006 “Effect of Ti interlayer on the residual stress and texture development of TiN thin films”, Surface & Coatings Technology. 200, pp. 5937-5945. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897205010534
[7]A.K. Krella, A. Czyżniewski, A. Gilewicz, A. Krupa, 2017 “Cavitation erosion of CrN/CrCN multilayer coating”, Wear. 386-387, pp. 80-89. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043164816303593
[8]吳秉欣,陳國聲,2009,“磁控濺渡氮氧化矽薄膜材料之機械性質檢測與分析”,微系統暨奈米科技協會會刊,,22,頁27-43。取自 https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?randomimg=H.rDS4_1528699704&validpath=%2Ftmp%2F%5Enclcdr__doschk%2FH.rDS4_1528699704__MjNhamVl&validinput=23ajee&check=%E7%A2%BA%E5%AE%9A
[9]U. Selvadurai, G. Fischer, T. Sprute, W. Tillmann, “Measurement of the depth-depending residual stress in thin multilayers for hard coatings”.
[10]Electtronic, Plasma, “Physical Vapor Deposition (PVD)”, Changing Surfaces. Retrieved from https://www.plasma-electronics.com/physical-vapor-deposition.html
[11]Koskinen, J, 2014 “Comprehensive Materials Processing”. 4. Retrieved from https://www.sciencedirect.com/science/article/pii/B978008096532100409X
[12]大永真空科技股份有限公司,陰極電弧沉積技術之簡介”。取自 http://www.dahyoung.com/thinktank_article.php?id=32
[13]Anders, André, 2010 “Unfiltered and Filtered Cathodic Arc Deposition”, Handbook of Deposition Technologies for Films and Coatings, pp. 466-531. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780815520313000107
[14]Yingyi Fu, Tong Wang, Wen Su, Yanan Yu, Jingbo Hu, 2015 “The electrocatalytic oxidation of carbohydrates at a nickel/carbon paper electrode fabricated by the filtered cathodic vacuum arc technique”, Electrochimica Acta. 174, pp. 199-206. Retrieved from https://www.sciencedirect.com/science/article/pii/S0013468615013584
[15]Daoyun Zhu, Changxi Zheng, Mingdong Wang, Yi Liu, Dihu Chen, Zhenhui He, Lishi Wen, W.Y. Cheung, 2010 “Influences of arc current on composition and properties of MgO thin films prepared by cathodic vacuum arc deposition”, Materials Chemistry and Physics. 124, pp. 1146-1150. Retrieved from https://www.sciencedirect.com/science/article/pii/S025405841000670X
[16]M. Medhisuwakul, N. Pasaja, S. Sansongsiri, J. Kuhakan, S. Intarasiri, L.D. Yu, 2013 “Development and application of cathodic vacuum arc plasma for nanostructured and nanocomposite film deposition”, Surface and Coatings Technology. 229, pp. 36-41. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897212006202
[17]F. Sanchette, C. Ducros, T. Schmitt, P. Steyer, A. Billard, 2011 “Nanostructured hard coatings deposited by cathodic arc deposition: From concepts to applications”, Surface & Coatings Technology. 205, pp. 5444-5453. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897211006177
[18]W.C. Lang, J.Q. Xiao, J. Gong, C. Sun, R.F. Huang, L.S. Wen, 2010 “Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition”. Vacuum, pp. 1111-1117. Retrieved from https://www.sciencedirect.com/science/article/pii/S0042207X10000618
[19]Hirofumi Takikawa, Hideto Tanoue, 2007 “Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films”, TRANSACTIONS ON PLASMA SCIENCE. 35. Retrieved from https://ieeexplore.ieee.org/document/4194935/
[20]Natthaphong Konkhunthot, Sarayut Tunmee, XiaoLong Zhou, Keiji Komatsu, Pat Photongkam, Hidetoshi Saitoh, Pornwasa Wongpanya, 2018 “The correlation between optical and mechanical properties of amorphous diamond-like carbon films prepared by pulsed filtered cathodic vacuum arc deposition”, Thin Solid Films. 653, pp. 317-325. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609018301974
[21]A.M. Pagon, J.G. Partridge, P. Hubbard, M.B. Taylor, D.G. McCulloch, E.D. Doyle, K. Latham, J.E. Bradby, K.B. Borisenko, G. Li, 2010 “The effect of deposition energy on the microstructure and mechanical properties of high speed steel films prepared using a filtered cathodic vacuum arc”, Surface & Coatings Technology. 204, pp. 3552-3558. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897210002847
[22]J.J. Guan, H.Q. Wang, L.Z. Qin, B. Liao, H. Liang, B. Li, 2017 “Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition”, Nuclear Instruments and Methods in Physics Research B. 397, pp. 86-91. Retrieved from https://www.sciencedirect.com/science/article/pii/S0168583X1730157X
[23]翁志偉,2006,“以過濾式陰極真空電弧沉積系統合成非晶質碳氟膜及其鑑定之研究”。取自 http://etd.lib.nctu.edu.tw/cgi-bin/gs32/hugsweb.cgi/login?o=dnthucdr&s=id=%22GH000923560%22.&searchmode=basic
[24]Qiwen Fann, Yinghui Du, Rong Zhang, Guoji Xu, 2013 “Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc”, Nuclear Instruments and Methods in Physics Research A. 708, pp. 78-82. Retrieved from https://www.sciencedirect.com/science/article/pii/S0168900213000648
[25]Wang-ping Wu, Zhao-feng Chen, 2017 “Analysis of the coatings against high-temperature oxidation and corrosion”, Johnson Matthey Technol. 61, pp. 93-110. Retrieved from https://www.technology.matthey.com/article/61/2/93-110/
[26]陳源澤,2008,“矽基板上濺鍍沉積氮化銦薄膜之研究”。取自 https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?randomimg=OM_tS._1528700090&validpath=%2Ftmp%2F%5Enclcdr__doschk%2FOM_tS._1528700090__Y3N6czg4&validinput=cszs88&check=%E7%A2%BA%E5%AE%9A
[27]Lei Shan, Yongxin Wang, Yangrong Zhang, Qi Zhang, Qunji Xue, 2016 “Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater”, Wear. 362-363, pp. 97-104. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043164816301004
[28]Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao, 2018 “Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates”, Applied Surface Science. 428, pp. 404-414. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433217328143
[29]A. Conde, C. Navas, A.B. Cristóbal, J. Housden, J. de Damborenea, 2006 “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings”, Surface & Coatings Technology. 201, pp. 2690-2695. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897206004221
[30]Yunsong Niu, Jie Wei, Zhiming Yu, 2015 “Microstructure and tribological behavior ofmultilayered CrN coating by arc ion plating”, Surface & Coatings Technology. 275, pp. 332-340. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897215003801
[31]S. Ortmann, A.Savan, Y. Gerbig, H. Haefke, 2003 “In-process structuring of CrN coatings, and its influence on friction in dry and lubricated sliding”, Wear. 254, pp. 1099-1105. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043164803003429
[32]J.J. Roa, E. Jiménez-Piqué, R.Martínez, G. Ramírez, J.M. Tarragó, R. Rodríguez, L.Llanes, 2014 “Contact damage and fracture micromechanisms ofmultilayered TiN/CrN coatings at micro- and nano-length scales”, Thin Solid Films. 571, pp. 308-315. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609014004222
[33]Fafeng Xia, Anna Yang, Wei Cui, Qiang Li, 2018 “Preparation and wear assessment of ultrasonic electrodeposited Ni-TiN thin films”, Ceramics International. Retrieved from https://www.sciencedirect.com/science/article/pii/S0272884218306539?via%3Dihub
[34]Wenmiao Zeng, Xueping Gan, Zhiyou Li, Kechao Zhou, 2017 “Effect of TiC addition on the microstructure and mechanical properties of TiN-based cermets”, Ceramics International. 43, pp. 1092-1097. Retrieved from https://www.sciencedirect.com/science/article/pii/S0272884216318107
[35]Mohammad Sharear Kabir, Paul Munroe, Zhifeng Zhou, Zonghan Xie, 2017 “Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering”, Wear. 380-381, pp. 163-175. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043164816305725
[36]Jin Qiaoling, Wang Haidou, Li Guolu, Zhang Jianjun, Liu Jinna, 2017 “Microstructures and Mechanical Properties of TiN/CrN Multilayer Films”, Rare Metal Materials and Engineering. 46, pp. 2857-2862. Retrieved from https://www.sciencedirect.com/science/article/pii/S1875537218300201
[37]J.L. Mo, M.H. Zhu, 2008 “Sliding tribological behavior of AlCrN coating”, Tribology International. 41, pp. 1161-1168. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301679X08000443
[38]Yu-Chiao Hsiao, Jyh-Wei Lee, Yung-Chin Yang, Bih-Show Lou, 2013 “Effects of duty cycle and pulse frequency on the fabrication of AlCrN thin films deposited by high power impulse magnetron sputtering”, Thin Solid Films. 549, pp. 281-291. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609013013588?via%3Dihub
[39]C. Sabitzer, J. Paulitsch, S. Kolozsvári, R. Rachbauer, P.H.Mayrhofer, 2016 “Impact of bias potential and layer arrangement on thermal stability of arc evaporated Al-Cr-N coatings”, Thin Solid Films. 610, pp. 26-34. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609016301523?via%3Dihub
[40]Seog-Young Yoon, Kwang O Lee, Sung Soo Kang, Kwang Ho Kima, 2002 “Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique”, Journal of Materials Processing Technology. 130-131, pp. 260-265. Retrieved from https://www.sciencedirect.com/science/article/pii/S092401360200746X
[41]J.E. Sanchez, O.M. Sanchez, L. Ipaz, W. Aperador, J.C. Caicedo, C. Amaya, M.A. Hernandez Landaverde, F. Espinoza Beltran, J. Munoz-Saldana, G. Zambrano, 2010 “Mechanical, tribological, and electrochemical behavior of Cr1-xAlxN coatings deposited by r.f. reactive magnetron co-sputtering method”, Applied Surface Science. 256, pp. 2380-2387. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433209015165
[42]Gwang S. Kim, Sang Y. Lee, Jun H. Hahn, Sang Y. Lee, 2003 “Synthesis of CrNyAlN superlattice coatings using closed-field unbalanced magnetron sputtering process”, Surface and Coatings Technology. 171, pp. 91-95. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897203002445
[43]K. Bobzin, C.H. Hopmann, A. Gillner, T. Brögelmann, N.C. Kruppe, M. Orth, M. Steger, M. Naderi, 2017 “Enhanced replication ratio of injection molded plastic parts by using an innovative combination of laser-structuring and PVD coating”, Surface & Coatings Technology. 332, pp. 474-483. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897217310046
[44]Eduardo K. Tentardini, Augusto O. Kunrath, Cesar Aguzzoli, Maria Castro, John J. Moore, Israel J.R. Baumvol, 2008 “Soldering mechanisms in materials and coatings for aluminum die casting”, Surface & Coatings Technology. 202, pp. 3764-3771. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897208000662
[45]J.L. Mo, M.H. Zhu, A. Leyland, A. Matthews, 2013 “Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings”, Surface & Coatings Technology. 215, pp. 170-177. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897212010468
[46]Sai Pramod Pemmasani, Krishna Valleti, Ravi C. Gundakaram, Koteswararao V. Rajulapati, Ramakrishna Mantripragada, Suresh Koppoju, Shrikant V. Joshi, 2014 “Effect of microstructure and phase constitution on mechanical properties of Ti1-xAlxN coatings”, Applied Surface Science. 313, pp. 936-946. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433214014172
[47]Zhao Li, Paul Munroe, Zhong-tao Jiang, Xiaoli Zhao, Jiang Xu, Zhi-feng Zhou, Jian-qing Jiang, Feng Fang, Zong-han Xie, 2012 “Designing superhard, self-toughening CrAlN coatings through grain boundary engineering”, Acta Materialia. 60, pp. 5735-5744. Retrieved from https://www.sciencedirect.com/science/article/pii/S1359645412004211?via%3Dihub
[48]Lihui Zhu, Mingmei Hu, Wangyang Ni, Yixiong Liu, 2012 “High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating”, Vacuum. 86, pp. 1795-1799. Retrieved from https://www.sciencedirect.com/science/article/pii/S0042207X12002242?via%3Dihub
[49]Fei Wang, David Holec, Magnus Oden, Frank Mücklich, Igor A. Abrikosov, Ferenc Tasn adi, 2017 “Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers”, Acta Materialia. 127, pp. 124-132. Retrieved from https://www.sciencedirect.com/science/article/pii/S1359645417300277?via%3Dihub
[50]D.G. Sangiovanni, V. Chirita, L. Hultman, 2012 “Toughness enhancement in TiAlN-based quarternary alloys”, Thin Solid Films. 520, pp. 4080-4088. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609012000685?via%3Dihub
[51]Y.H. Chen, J.J. Roa, C.H. Yu, M.P. Johansson-Jõesaar, J.M. Andersson, M.J. Anglada, M. Odén, L. Rogström, 2018 “Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying”, Surface & Coatings Technology. 342, pp. 85-93. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897218301853
[52]Wolfgang Tillmann, Markus Dildrop, 2017 “Influence of Si content onmechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures”, Surface & Coatings Technology. 321, pp. 448-454. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897217304814?via%3Dihub
[53]Xudong Sui, Guojian Li, Xuesi Qin, Haidong Yu, Xiangkui Zhou, Kai Wang, Qiang Wang, 2016 “Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool”, Ceramics International. 42, pp. 7524-7532. Retrieved from https://www.sciencedirect.com/science/article/pii/S0272884216002029?via%3Dihub
[54]V. Moraes, H. Bolvardi, S. Kolozsvári, H. Riedl, P.H. Mayrhofer, 2018 “Thermal stability and mechanical properties of Ti-Al-B-N thin film”, International Journal of Refractory Metals & Hard Materials. 71, pp. 320-324. Retrieved from https://www.sciencedirect.com/science/article/pii/S0263436817307187?via%3Dihub
[55]Yao-Can Zhu, K. Fujita, N. Iwamoto, H. Nagasaka, T. Kataoka, 2002 “Influence of boron ion implantation on the wear resistance of TiAlN coatings”, Surface and Coatings Technology. 158-159, pp. 664-668. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897202002384
[56]A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, 2005 “Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation”, Surface & Coatings Technology. 200, pp. 2114-2122. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897205000976
[57]Y.C. Chim, X.Z. Ding, X.T. Zeng, S. Zhang, 2009 “Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc”, Thin Solid Films. 517, pp. 4845-4849. Retrieved from https://www.sciencedirect.com/science/article/pii/S004060900900501X
[58]O. Banakh, P.E. Schmid, R. Sanjines, F. Levy, 2003 “High-temperature oxidation resistance of Cr1-xAlxN thin films deposited by reactive magnetron sputtering”, Surface and Coatings Technology. 163-164, pp. 57-61. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897202005893
[59]R. Escobar Galindo, J.L. Endrino, R. Martínez, J.M. Albella, 2010 “Improving the oxidation resistance of AlCrN coatings by tailoring chromium out-diffusion”, Spectrochimica Acta Part B. 65, pp. 950-958. Retrieved from https://www.sciencedirect.com/science/article/pii/S0584854710002648
[60]QianzhiWang, Fei Zhou, Jiwang Yan, 2016 “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests”, Surface & Coatings Technology. 285, pp. 203-213. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897215304163
[61]Hui Zhou, Jun Zheng, Binhua Gui, Dongsen Geng, Qimin Wang, 2017 “AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering”, Vacuum. 136, pp. 129-136. Retrieved from https://www.sciencedirect.com/science/article/pii/S0042207X16304456
[62]A.E. Santana, A. Karimi, V.H. Derflinger, A. Schutze, 2004 “Microstructure and mechanical behavior of TiAlCrN multilayer thin films”, Surface and Coatings Technology. 177-178, pp. 334-340. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897203010326
[63]X.C. Zhang, B.S. Xu, H.D. Wang, Y.X. Wu, 2008 “Effect of graded interlayer on the mode I edge delamination by residual stresses in multilayer coating-based systems”, Applied Surface Science. 254, pp. 1881-1889. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433207010495
[64]Jong-Keuk Park, Hak-Joo Lee, Wook-Seong Lee, Young-Joon Baik, 2014 “Effect of TiAl-based interlayer on the surfacemorphology and adhesion of nanocrystalline diamond film deposited on WC-Co substrate by hot filament CVD”, Surface & Coatings Technology. 258, pp. 108-113. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897214008627
[65]H. Holleck, V. Schier, 1995 “Multilayer PVD coatings for wear protection”, Surface and Coatings Technology. 76-77, pp. 328-336. Retrieved from https://www.sciencedirect.com/science/article/pii/0257897295025553
[66]M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, 2009 “Concepts for the design of advanced nanoscale PVD multilayer protective thin film”, Journal of Alloys and Compounds. 483, pp. 321-333. Retrieved from https://www.sciencedirect.com/science/article/pii/S0925838808018781
[67]Marco Renzelli, Muhammad ZeeshanMughal, Marco Sebastiani, Edoardo Bemporad, 2016 “Design, fabrication and characterization ofmultilayer Cr-CrN thin coatings with tailored residual stress profile”, Materials and Design. 112, pp. 162-171. Retrieved from https://www.sciencedirect.com/science/article/pii/S0264127516312321
[68]Jia-Hong Huang, Fan-Yi Ouyang, Ge-Ping Yu, 2007 “Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel”, Surface & Coatings Technology. 201, pp. 7043-7053. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897207000175
[69]Hao Du, Haibo Zhao, Ji Xiong, Guang Xian, 2013 “Effect of interlayers on the structure and properties of TiAlN based coatings on WC-Co cemented carbide substrate”, Int. Journal of Refractory Metals and Hard Materials. 37, pp. 60-66. Retrieved from https://www.sciencedirect.com/science/article/pii/S0263436812001916
[70]B. Bouaouina, A. Besnard, S.E. Abaidia, F. Haid, 2016 “Residual stress, mechanical and microstructure properties of multilayer Mo2N/CrN coating produced by R.F Magnetron discharge”, Applied Surface Science. 395, pp. 117-121. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433216307644
[71]C.V. Falub, A. Karimi, M. Ante, W. Kalss, 2007 “Interdependence between stress and texture in arc evaporated Ti-Al-N thin films”, Surface & Coatings Technology. 201, pp. 5891-5898. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897206013569
[72]J. Vetter, R. Knaup, , H. Dwuletzki, E. Schneider, S. Vogler, 1996 “Hard coatings for lubrication reduction in metal forming”, Surface and Coatings Technology. 86-87, pp. 739-747. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897296030630
[73]X.T. Zeng, S. Zhang, T. Muramatsu, 2000 “Comparison of three advanced hard coatings for stamping applications”, Surface and Coatings Technology. 127, pp. 38-42. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897299006684
[74]B. Podgornik, B. Zajec, N.Bay, J.Vizintin, 2011 “Application of hard coatings for blanking and piercing tools”, Wear. 270, pp. 850-856. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043164811000652
[75]B. Navinsek, P. Panjan, I. Milosev, 1997 “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures”, Surface and Coatings Technology. 97, pp. 182-191. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897297003939
[76]V. Nunes, F.J.G. Silva, M.F. Andrade, R. Alexandre, A.P.M. Baptista, 2017 “Increasing the lifespan of high-pressure die castmolds subjected to severe wear”, Surface & Coatings Technology. 332, pp. 319-331. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897217308836
[77]B. Navinsek, P. Panjan, 1995 “Novel applications of CrN (PVD) coatings deposited at 200 °C”, Surface and Coatings Technology. 74-75, pp. 919-926. Retrieved from https://www.sciencedirect.com/science/article/pii/0257897295082875
[78]L. Wang, X. Nie, J. Housden, E. Spain, J.C. Jiang, E.I. Meletis, A. Leyland, A. Matthews, 2008 “Material transfer phenomena and failure mechanisms of a nanostructured Cr-Al-N coating in laboratory wear tests and an industrial punch tool application”, Surface & Coatings Technology. 203, pp. 816-821. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897208004052
[79]A. Alyamani, O. M. Lemine, 2012 “FE-SEM Characterization of Some Nanomaterial”. Retrieved from https://www.researchgate.net/publication/221927747_FE-SEM_Characterization_of_Some_Nanomaterial
[80]Yessi Jusman, Siew Cheok Ng, Noor Azuan Abu Osman, 2014 “Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX”, The Scientific World Journal. Retrieved from https://www.researchgate.net/publication/266912548_Investigation_of_CPD_and_HMDS_Sample_Preparation_Techniques_for_Cervical_Cells_in_Developing_Computer-Aided_Screening_System_Based_on_FE-SEMEDX?enrichId=rgreq-52f2afa8630f7684636081add565b9d0-XXX&enrichSource=Y292ZXJQYWdlOzI2NjkxMjU0ODtBUzoxNzk1NTk2NzI1OTAzMzZAMTQxOTgyMTc3MDIwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
[81]羅聖全,2013,“科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)”,科學研習,頁2-4。取自 https://activity.ntsec.gov.tw/activity/ssm/52_5/files/assets/basic-html/index.html#page1
[82]林麗娟,1993,“X光繞射在工業材料分析上之應用”,工業材料雜誌,,80期,頁50-55。取自https://www.materialsnet.com.tw/DocView.aspx?id=60
[83]C.-H. Ma, J.-H. Huang, Haydn Chen, 2002 “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films. 418, pp. 73-78. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609002006806
[84]26443, International Standard ISO, 2008 “Fine ceramics (advanced ceramics, advanced technical ceramics)-Rockwell indentation test for evaluation of adhesion of ceramic coatings”. Retrieved from https://www.iso.org/standard/43584.html
[85]Wang, H., 2018 “Residual Stresses and Nanoindentation Testing of Films and Coatings”, Residual Stresses and Nanoindentation Testing of Films and Coatings, pp. 21-36. Retrieved from https://link.springer.com/chapter/10.1007/978-981-10-7841-5_2
[86]A. Leyland, A. Matthews, 2000 “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour”, Wear. 246, pp. 1-11. Retrieved from https://www.sciencedirect.com/science/article/pii/S0043164800004889
[87]A. Karimi, Y. Wang, T. Cselle, M. Morstein, 2002 “Fracture mechanisms in nanoscale layered hard thin films”, Thin Solid Films. 420-421, pp. 275-280. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609002009446
[88]P. Jedrzejowski, J.E. Klemberg-Sapieha, L. Martinu, 2003 “Relationship between the mechanical properties and the microstructure of nanocomposite TiN/SiN1.3 coatings prepared by low temperature plasma enhanced chemical vapor deposition”, Thin Solid Films. 426, pp. 150-159. Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609003000282
[89]Sam Zhang, Deen Sun, Yongqing Fu, Hejun Du, 2005 “Toughness measurement of thin films: a critical review”, Surface & Coatings Technology. 198, pp. 74-84. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897204010084
[90]M. Wang, D. Wang, P. Schaaf, 2018 “Layer thickness effect on fracture behavior of Al/Si3N4 multilayer on Si substrate under three-point bending”, Applied Surface Science. 445, pp. 563-567. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169433218305841?via%3Dihub
[91]M. Danek, F. Fernandes, A. Cavaleiro, T. Polcar, 2017 “Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN film”, Surface & Coatings Technology. 313, pp. 158-167. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897217300531?via%3Dihub
[92]C. Sabitzer, J. Paulitsch, S. Kolozsvári, R. Rachbauer, P.H.Mayrhofer, 2014 “Influence of bias potential and layer arrangement on structure and mechanical properties of arc evaporated AleCreN coatings”, Vacuum. 106, pp. 49-52. Retrieved from https://www.sciencedirect.com/science/article/pii/S0042207X14000840?via%3Dihub
[93]K. Shukla, R. Rane, J. Alphonsa, P.Maity, S. Mukherjee, 2017 “Structural,mechanical and corrosion resistance properties of Ti/TiN bilayers deposited bymagnetron sputtering on AISI 316L”, Surface & Coatings Technology. 324, pp. 167-174. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897217305662?via%3Dihub
[94]Yeting Xi, Kewei Gao, Xiaolu Pang, Huisheng Yang, Xiaotao Xiong, Hong Li, Alex A. Volinsky, 2017 “Film thickness effect on texture and residual stress sign transition in sputtered TiN thin film”, Ceramics International. 43, pp. 11992-11997. Retrieved from https://www.sciencedirect.com/science/article/pii/S027288421731252X?via%3Dihub
[95]R. Ali, M. Sebastiani, E. Bemporad, 2015 “Influence of Ti-TiN multilayer PVD-coatings design on residual stresses and adhesion”, Materials and Design. 75, pp. 47-56. Retrieved from https://www.sciencedirect.com/science/article/pii/S0261306915000904?via%3Dihub
[96]Sam Zhang, Deen Sun, Yongqing Fu, Hejun Du, 2005 “Toughening of hard nanostructural thin films: a critical review”, Surface & Coatings Technology. 198, pp. 2-8. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897204010072
[97]KJ. Ma, A. Bloyce, T. Bell, 1995 “Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings”, Surface and Coatings Technology. 76-77, pp. 297-302. Retrieved from https://www.sciencedirect.com/science/article/pii/0257897295025855
[98]Erwin Mayrhofer, Leo Janka, Wolfgang Peter Mayr, Jonas Norpoth, Manel Rodriguez Ripoll, Martin Gröschl, 2015 “Cracking resistance of Cr3C2-NiCr and WC-Cr3C2-Ni thermally sprayed coatings under tensile bending stress”, Surface & Coatings Technology. 281, pp. 169-175. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897215302401?via%3Dihub
[99]J.C.A. Batista, C. Godoy, A. Matthews, 2003 “Impact testing of duplex and non-duplex (Ti,Al)N and Cr-N PVD coatings”, Surface and Coatings Technology 163-164, pp. 353-361. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897202006321
[100] 周俊豪,2016,“介層設計多層氮化鋁鈦硼硬質鍍膜之高溫氧化及機械性質分析”,國立虎尾科技大學機械與電腦輔助工程系研究所碩士論文。[101] Musil, J., 2012 “Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness”, Surface & Coatings Technology. 207, pp. 50-65. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897212004793?via%3Dihub
[102] Sang Yong Lee, Sang Yul Lee, 2006 “Comparative evaluation of TiN/CrN, AlN/CrN, TiAlN/CrN multilayer films for the use of semi-solid processing of Cu alloys”, Solid State Phenomena. 116-117, pp. 124-127. Retrieved from https://www.researchgate.net/publication/243760936_Comparative_evaluation_of_TiNCrN_AlNCrN_TiAlNCrN_multilayer_films_for_the_use_of_semi-solid_processing_of_Cu_alloys
[103] Jiang C.L., Zhu H.L., Shin K.S., Tang Y.B., 2017 “Influence of titaniuminterlayer thickness distribution on mechanical properties of Ti/TiNmultilayer coatings”, Thin Solid Films. 632, pp. 97-105. Retrieved from https://www.sciencedirect.com/science/article/pii/S004060901730295X?via%3Dihub
[104] 植柏鈞,2017,“鈦介層厚度對鍍覆於AISI D2鋼之氮化鈦鋯薄膜機械性質與耐磨性之影響”,國立清華大學工程與系統科學研究所碩士論文。[105] P.Wieciński, J. Smolik, H. Garbacz, K.J. Kurzydłowski, 2014 “Failure and deformation mechanisms during indentation in nanostructured Cr/CrNmultilayer coatings”, Surface & Coatings Technology. 240, pp. 23-31. Retrieved from https://www.sciencedirect.com/science/article/pii/S025789721301150X?via%3Dihub
[106] M. Berger, U. Wiklund, M. Eriksson, H. Engqvist, S. Jacobson, 1999 “The multilayer effect in abrasion-optimising the combination of hard and tough phases”, Surface and Coatings Technology. 116-119, pp. 1138-1144. Retrieved from https://www.sciencedirect.com/science/article/pii/S0257897299001516
[107] Rostislav Daniel, Michael Meindlhumer, Jakub Zalesak, Bernhard Sartory, Angelika Zeilinger, ChristianMitterer, Jozef Keckes, 2016 “Fracture toughness enhancement of brittle nanostructuredmaterials by spatial heterogeneity: A micromechanical proof for CrN/Cr and TiN/SiOx multilayers”, Materials and Design. 104, pp. 227-234. Retrieved from https://www.sciencedirect.com/science/article/pii/S026412751630630X?via%3Dihub