|
[1] M. T. Bohr, International Scaling-The real limiter to high performance ULSI, IEEE, 95 (1995) 241-244. [2] R.A. Levy, M.L. Green, P.K. Gallager, Characterization of LPCVD Aluminum for VLSI Processing, J. Elcectrochen. Soc., 131(9) (1984) 2175-2182. [3] C. Whitman, M.M. Moslehi, A. Paranjpe. L. Velo, T. Omstead, Ultralarge scale integrated metallization and interconnects, J. Vac. Sci. Technol. A., 17(4) (1999) 1893-1897. [4]楊正杰,張鼎張,鄭晃忠,“銅金屬與低介電常數材料與製程”,國家毫米元件實驗室,奈米通訊7卷4期,中華民國89年11月出刊。 [5] 2015, The international technology roadmap for semiconductor, ITRS. [6] S.T Chen, G.S. Chen, Electroless plating of low-resistivity Cu-Mn alloy thin films with self-forming capacity and enhanced thermal stability, 648 (2015) 474-480. [7] J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, T.S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition, Appl. Surf. Sci., 364 (2016) 358-364. [8]M. Haneda, J. Iijima, J. Koike, Growth behavior of self-formed barrier at Cu–Mn/SiO2 interface at 250–450℃,Appl. Phys. Lett., 90 (2007) 1-3. [9]T. Usui, H. Nasu, S. Takahashi, N. Shimizu, T. Nishikawa, M. Yoshimaru, H. Shibata, M. Wada, J. Koike, Highly reliable copper dual-damascene interconnects with self-formed MnSixOy barrier Layer, IEEE Trans. Electron Devices, 53 (2006) 2492-2499. [10]J. Koike, M. Haneda, J. Iijima, M. Wada , “Cu alloy metallization for self-forming barrier process”, In IRPS (Burlingame), (2006) 161–163. [11]J. Iijima, Y. Fujii, K. Neishi, J. Koike, Resistivity reduction by external oxidation of Cu-Mn alloy films for semiconductor interconnect application, J. Vac. Sci. Technol., 27 (2009) 1963-1968. [12]S. M. Chung, J. Koike, Analysis of dielectric constant of a self-forming barrier layer with Cu-Mn alloy on TEOS-SiO2, J. Vac. Sci. Technol, 27 (2009) 28-31. [13] J.R. Lloyd, J.J. Clement, Electromigration in copper conductors, Thin Solid Films, 262 (1995) 135-141. [14] S. Wolf, Multilevel interconnects for ULSI, in Silicon Processing for the VLSI Era, Deep Submicron Technology, 4 (2002) 573. [15] Y.S. Diamand, S. Lopatin, Integrated electroless metallization for ULSI, Electrochimi Acta, 44 (1999) 3639-3649. [16] H.Y. Wong, N.F. Mohd Shukor, N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J., 38 (2007) 777-782. [17] H. Cai, D. Tong, Y. Wang, X. Song, B. Ding, Reactive synthesis of porous Cu3Si compound, J. Alloys Compd, 509 (2011) 1672-1676. [18] J.D. McBrayer, R.M. Swanson, Y.W. Sigmon, Diffusion of metals in silicon dioxide, J. Electrochem. Soc., 133 (1986) 1242-1246 [19] M. A. Nicolet, Diffusion Barriers in Thin Films, Thin Solid Films, 52, (1978), 415-443. [20] R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, T. Q. Hurd, Diffusion studies of copper on ruthenium thin film, Electrochem. Solid-State Lett., 7 (2004) 154–157. [21] S.M. Choi,K. C. Park, B. S. Suh, I. R. Kim, H. K. Kang, K. P. Suh, H. S. Park, J. S. Ha, D. K. Joo, Process integration of CVD Cu seed using ALD Ru glue layer for sub-65nm Cu interconnect, IEEE VLSI Tech. Symp.,15-17 (2004) 64-65. [22] T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, L. C. Chen,5 nm ruthenium thin film as a directly plateable copper diffusion barrier, Appl. Phys. Lett., (2005) 86-88. [23] D. C. Perng, J. B. Yeh, K. C. Hsu, Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization,Applied Surface Science, 256 (2009) 688-692. [24] S.M. Choi, K. C. Park, B. S. Suh, I. R. Kim, H. K. Kang, K. P. Suh, H. S. Park, J. S. Ha, D. K. Joo, Process integration of CVD Cu seed using ALD Ru glue layer for sub-65nm Cu interconnect, IEEE VLSI Tech. Symp., 15-17 (2004) 64-65. [25] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Delogianni, “Damascene copper electroplating for chip interconnections”, IBM J. Res. Dev., 42 (1998) 567-574. [26] F. Cao, Y. Wang, F.Y. Li, B.H. Tang,Evaluation of Cu(Ti) and Cu(Zr) alloys in barrier-less Cu metallization, Materials Chemistry and Physics, 217 (2018) 412-420. [27] J.H. Park,D.Y. Moon,D.S. Han,Y.J. Kang,S.R. Shin,J.W. Park, ,Self-forming barrier characteristics of Cu–V and Cu–Mn films for Cu interconnects,Thin Solid Films, 547 (2013) 141-145. [28] J.H. Park, D.-S. Han, K.D. Kim, and J.W. Park, Effects of plasma pretreatment on the process of self-forming Cu–Mn alloy barriers for Cu interconnects, AIP Advances, 8 (2018) 1-7. [29] K.H. Nagy, F. Misják, In-situ transmission electron microscopy study of thermal stability and carbide formation in amorphous Cu-Mn/C films for interconnect applications, Journal of Physics and Chemistry of Solids, 121 (2018) 312-318. [30] C. J. Wilson, H. Volders, K. Croes, M. Pantouvaki, G. P. Beyer, A. B. Horsfall, A. G. O’Neill, Z. Tokei, In situ x-ray diffraction study of self-forming barriers from a Cu-Mn alloy in 100 nm Cu/low-k damascene interconnects using synchrotron radiation, Microelectron. Eng., 87 (2010) 398-401. [31] Y. Otsuka, J. Koike, H. Sako, K. Ishibashi, N. Kawasaki, S. M. Chung, I. Tanaka, Graded composition and valence states in self-forming barrier layers at Cu–Mn/SiO2 interface, Appl. Phys. Lett., 96 (2010) 012101. [32] J. Gong, G. Wei, J. A. Barnard, G. Zangari, “Electrodeposition and characterization of sacrificial copper–manganese alloy coatings: part II. Structural, mechanical, and corrosion-resistance properties”, Metall. Mater. Trans. 36 (2005) 2705–2715. [33] F. Mangolini, L. Magagnin, P. l. Cavalloti, “Pulse plating of Mn–Cu alloys on steel”, J. Electrochem. Soc., 153 (2006) 623-628. [34] J. Koike, M. Wada, Self-forming diffusion barrier layer in Cu–Mn alloy metallization, Appl. Phys. Lett., 87 (2005) 041911. [35] 張勁燕,2001,“半導體製程設備”,五南圖書出版有限公司,第九章,359。 [36] Sreejith Kaniyankandy , J Nuwad, C Thinaharan, G K Dey, C G S Pillai, Electrodeposition of silver nanodendrites, Nanotechnology, 18 (2007) 125610 1-6 . [37] S.R. Branlovic, J.X. Wang, R.R. Adzic, Metal monlayer deposition by replacement of metal adlayers on electrode surfaces, Surf. Sci., 474 (2001) 173-179. [38] S.R Brankovic, J.X. Wang, R.R. ADZIC, New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level, J. Serb. Chem. Soc., 66 (2001) 887-898 [39]Quentin Rayée, Thomas Doneux, Claudine Buess-Herman, Underpotential deposition of silver on gold from deep eutectic electrolytes, Electrochimica Acta, 237 (2017) 127-132. [40] Ej. Calove, and R.A. Etechenique, Kinetic Applications of the Electrochemical Quartz Crystal Microbalance, Comprehensive Chemical Kinetics, R.G. Compton and G. Hancock(Editor), Elservier, Amsterdam,1986. [41] D. Gokcen, S.E. Bae, S.R. Brankovic, Kinetics of metal deposition via surface-limited redox replacement reaction, ECS Transactions, 35 (2011) 11-22. [42] J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, T.S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limitedredox replacement and underpotential deposition, Appl. Surf. Sci., 364 (2016) 358-364. [43] V. Venkatasamy, N. Jayaraju, S.M. Cox, C. Thambidurai, M. Mathe, J.L. Stickney, Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE), J. Electroanal. Chem., (2006) 195-202. [44] D. Banga, N. Jarayaju, L. Sheridan, Y.G. Kim, B. Perdue, X. Zhang, Q. Zhang, J. Stickney, Electrodeposition of CuInSe2 (CIS) via electrochemical atomic layer deposition (E-ALD), Langmuir, 28 (2012) 3024-3031. [45] J.S. Fang, Y.S. Liu, T.S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films, 580 (2015) 1-5. [46] V. Venkatasamy, N. Jayaraju, S.M. Cox, C. Thambidurai, M. Mathe, J.L. Stickney, Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE), J. Electroanal. Chem., (2006) 195-202. [47] J. S. Fang, J. H. Chen, G. S. Chen, Y. L. Cheng, T. S. Chin,Direct, sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR, Electrochimica Acta, 206 (2016) 45-51. [48] K. Venkatraman, R. Gusley, L. Yu, Y. Dordi, R. Akolkar, Electrochemical Atomic Layer Deposition of Copper: A Lead-Free Process Mediated by Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc.,163 (2016) D3008-D3013. [49] D. O. Banga, R. Vaidyanathan, L. Xuehai, J. L. Stickney, S. Cox, U. Happeck, 2008, “Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD)”, Electrochimica Acta, 53 6988. [50] T. Oeznuelueer, I. Erdogan, I. Sisman, U. Demir, 2005 , “Electrochemical Atom-by-Atom Growth of PbS by Modified ECALE Method”, Chem. Mater., 17 935. [51] D. Banga, Y. G. Kim, and J. Stickney, 2011, “PbSe/PbTe Superlattice Formation via E-ALD”, J. Electrochem. Soc., 158, 99. [52] M. An, J. Zhang, L. Chang, Study of the electrochemical deposition of Sn–Ag–Cu alloy by cyclic voltammetry and chronoamperometry, Electrochimica Acta, 54 (2009) 2883-2889. [53] Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes: Electrochemistry Fundamentals, retrieved http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes [54] B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochimi Acta 28.7 (1983) 879-889. [55] Peter T. Kissinger, William R. Heineman, Cyclic Voltammetry, Journal of Chemical Education, 60 (1983) 702-706. [56] Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes: Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes. [57] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd, John Wiley and Sons, Inc. (2001). [58] M. Morisue, Y. Fukunaka, E. Kusaka, R. Ishii, K. Kuribayashi, Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto a TiN substrate, J. Electroanal. Chem., 559 (2003) 155-163. [59]D. Turnbull, J.C. Fisher, Rate of nucleation in condensed systems, The J. Chem. Phys., 17 (1949) 71-73. [60] A. Bewick, M. Fleischmann, H. R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, Transactions of the Faraday Society, 58 (1962) 2200-2216. [61] B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochimi Acta, 28 (1983) 879-889. [62] B.J. Hwang, R. Santhanam, Y.L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta, 46 (2001) 2843-2853. [63] T.P. Moffat, D. Wheeler, D. Josel, Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements: Influence of SPS, J. Electrochem. Soc., 151 (2004) C262-C271. [64] B. J. Hinch, C. Koziol, J.P. Toennies, G. Zhang, Single and double layer growth mechanisms induced by quantum size effects in Pb films deposited on Cu (111), Vac., 42 (1991) 309-311. [65] B. Rashkova, B. Guel, R.T. PoÈ tzschke, G. Staikov, W.J. Lorenz, Electrodeposition of Pb on n-Si(111), Electrochimi. Acta, 43 (1998) 3021-3028. [66] P.C.T.D. Ajello, M.L. Munford, A.A. Pasa, Transient equations for multiple nucleation on solid electrodes: a stochastic description, J. chem. Phys., 111 (1999) 4267-4272. [67] I. Danaee, 2D-3D nucleation and growth of palladium on graphite electrode, Ind. Eng. Chem., 19 (2013) 1008-1013. [68] K. Raeissi, A. Saatchi, M.A. Golozar, Effect of nucleation mode on the morphology and texture of electrodeposited zinc, J. Appl. Electrochem., 33 (2003) 635-642. [69] J.L. Delplancke, M. Sun, T.J. OKeefe, R. Winand, Nucleation of electrodeposited copper on anodized titanium, Hydrometallurgy, 23 (1989) 47-66. [70] G.Gunawardena, G.Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation: Part I. general considerations, J. Electroanal. Chem., 138 (1982) 225-239. [71] D. Grujicic, B. Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon, Electrochimi Acta, 50 (2005) 4426-4443. [72]D. Grujicic, B. Pesic, Electrodeposition of copper: the nucleation mechanisms, Electrochimi Acta, 47 (2002) 2901-2912. [73] O. Renault, A Garnier, J Morin, N Gambacorti, High-resolution XPS spectromicroscopy study of micro-patterned gold–tin surfaces, Appl. Surf. Sci., 258 (2012) 10077-10083. [74] L. Oniciu, L. Muresan, Some fundamental aspects of leveling and brightening in metal electordepostion, J. Appl. Electrochem., 21 (1991) 565-574. [75] H. Natter, R. Hempelmann, Nanocrystalline Copper by Pulsed Electrodeposition: The Effects of Organic Additives, Bath Temperature, and pH, J. Phys. Chem., 100 (1996) 19525-19532. [76] Y. M. Lin, S.C. Yen, Effects of additives and chelating agents on electroless copper plating. Appl. surf. Sci., 178 (2001) 116-126. [77] W.Z. Xu, J.B. Xu, H.S. Lu, J.X. Wang, Z.J. Hu, X.P. Qu, Direct copper plating on Ultra-Thin sputtered cobalt film in an alkaline bath, J. Electrochem. Soc., 160 (2013) D3075-D3080. [78] P. Wei, O. Hileman, M.-R. Bateni, X. Deng, A. Petric, Manganese deposition without additives, Surf. Coat. Technol. 201 (2007) 7739–7745. [79] P. Díaz-Arista, R. Antaño-López, Y. Meas, R. Ortega, E. Chainet, P. Ozil, G. Trejo, EQCM study of the electrodeposition of manganese in the presence of ammonium thyociante in chloride-based acidic solutions, Electrochim. Acta 51 (2006) 4393–4404. [80] J. Lewis, P. Scaife, D. Swinkels, Electrolytic manganese metal from chloride electrolytes. I. Study of deposition conditions, J. Appl. Electrochem. (1976) 199–209. [81] J. Lewis, P. Scaife, D. Swinkels, Electrolytic manganese metal from chloride electrolytes. II. Effect of additives, J. Appl. Electrochem. 6 (1976) 453–462. [82]J.H. Jacobs, J.W. Hunter, W.H. Yaroll, P.E.Churchward, R.G. Knikerbocker,Operations of Electrolytic Manganese Pilot Plant at Boulder City, Nevada, Technical Report 463United States Department of Interior—Bureau of Mines, Boulder City, USA (1946) [83] J. Lu, D. Dreisinger, T. Gluck, Manganese electrodeposition-Aliterature review,141 (2014) 105-116. [84] X. Zhang,Z. Liu,C. Tao,X. Quan,Pulse current electrodeposition of manganese metal from sulfate solution,Journal of Environmental Chemical Engineering, 7 (2019) 103010. [85] M. Hareifar, M. Zandrahimi, Effect of current density and electrolyte pH on microstructure of Mn–Cu electroplated coatings, Applied Surface Science, 284 (2013) 126-132. [86] M. F. Barcia , V. Hoffmann, S. Oswald, L. Giebeler, U. Wolff, M. Uhlemann, A. Gebert , Electrodeposition of manganese layers from sustainable sulfate based electrolytes, Surface and Coatings Technology, 334 (2018) 261-268. [87]G. Zangari, J. Gong, Electrodeposition and characterization of manganese coatings, J. Electrochem. Soc., 149 (2002) C209-C217. [88] L. Yu, Z. Vashaei, F. Ernst, R. Akolk, Electroless Deposition of Copper-Manganese for Applications in Semiconductor Interconnect Metallization, J. Electrochem. Soc., 163 (2016) D374-D378. [89]T. Muppidi, D.P. Field, J.E. Sanchez Jr, C. Woo, Barrier layer,geometry and alloying effects on the microstructure and texture of electroplated copper thin films and damascene lines, Thin Solid Films, 471 (2005) 63-70. [90] J. Koo, S.K. won, N.R. Kim, K. Shin, H.M. Lee, Ethylenediamine-enhanced oxidation Resistivity of a Copper Surface during Water-Based Copper Nanowire Synthesis, J. Phys. Chem. 120 (2016) 3334-3340. [91] Christopher J. Wilson Henny Volders KristofCroes,Marianna Pantouvaki,Gerald P. Beyer.Alton B.Horsfall,Anthony G.O’Neill,Zsolt Tőkei,In situ X-ray diffraction study of self-forming barriers from a Cu–Mn alloy in 100 nm Cu/low-k damascene interconnects using synchrotron radiation,Microelectronic Engineering,87 (2010) 398-401. [92]Zs.Czigány, F.Misják, O.Geszti, G.Radnóczi, Structure and phase formation in Cu–Mn alloy thin films deposited at room temperature,Acta Materialia,60 (2012) 7226-7231. [93] H.J. Lee,T. E. Hong,S.H. Kim,Atomic layer deposited self-forming Ru-Mn diffusion barrier for seedless Cu interconnects,Journal of Alloys and Compounds,686 (2016) 1025-1031. [94] http://resource.npl.co.uk/mtdata/phdiagrams/cumn.htm [95]C.Y. Wu, C.T. Wu,W.H. Lee, S.C. Chang,Y.L. Wang,A study on annealing mechanisms with different manganese contents in CuMn alloy,Journal of Alloys and Compounds, 542 (2012) 118-123.
|