|
[1]Barash M. et al., “Thermal Effects on the Accuracy of Numerically Controlled Machine Tools,” CIRP Annals - Manufacturing Technology, vol. 35, no. 1, pp.255-258, 1986. [2]S. Yang, J. Yuan and J. Ni, “The improvement of thermal error modeling and compensation on machine tools by CMAC neural network,” International Journal of Machine Tools and Manufacture, vol. 36, no. 4, pp. 527-537, Apr. 1996. [3]M. Hattori, H. Noguchi, S. Ito, T. Suto and H. Inoue, “Estimation of thermal-deformation in machine tools using neural network technique,” Journal of Materials Processing Technology, vol. 56, nol.1-4, pp. 765-772, Jan. 1996. [4]J.-S. Chen, “Neural network-based modelling and error compensation of thermally-induced spindle errors,” The International Journal of Advanced Manufacturing Technology, vol. 12, nol. 4, pp. 303-308, Jul. 1996. [5]P. Vanherck, J. Dehaes, and M. Nuttin, “Compensation of thermal deformation in machine tools with neural nets,” Computers in Industry, vol. 33, no. 1, pp. 119-125, Aug. 1997. [6]J. Yuan and J. Ni, “The real-time error compensation technique for CNC machining systems”, Mechatronics, vol. 8, nol.4, pp.359-380, Jun. 1998. [7]Y. Wang, G. Zhang, S. M. Kee and W. S. Jhon, “Compensation for the thermal error of a multi-axis machining center,” Journal of Materials Processing Technology, vol. 75, pp.45-53, Mar. 1998. [8]C. D. Mize and J. C. Ziegert, “Neural network thermal error compensation of a machining center,” Precision Engineering, vol. 24, nol.4, pp.338-346, Oct. 2000. [9]J. H. Lee, J. H. Lee, and S. H. Yang, “Thermal Error Modeling of a Horizontal Machining Center Using Fuzzy Logic Strategy,” Journal of Manufacturing Processes, vol. 3, no. 2, pp. 120-127, 2001. [10]Z. C. Du, J. G. Yang, Z. Q. Yao, and B. Y. Xue, “Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center,” Journal of Materials Processing Technology, vol. 129, no. 1-3, pp. 619-623, Oct. 2002. [11]J. G. Yang, Y. Q. Ren, and Z. C. Du, “An application of real-time error compensation on an NC twin-spindle lathe”, Journal of Materials Processing Technology, vol. 129, nol.1-3 pp. 474-479, Oct. 2002. [12]K. C. WANG, P. C. TSENG, and K. M. LIN, “Thermal Error Modeling of a Machining Center Using Grey System Theory and Adaptive Network-Based Fuzzy Inference System,” JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 49, no. 4, pp. 1179-1187, 2006. [13]Z.-C. Lin and J.-S. Chang, “The building of spindle thermal displacement model of high Speed machine center,” International Journal of Advanced Manufacturing Technology, Vol. 34, nol.5-6, pp. 556-566, Sep. 2007. [14]K. C. Fan, “An Intelligent Thermal Error Compensation System for CNC Machining Centers,” Journal of the Chinese Society of Mechanical Engineers, vol. 28, no.1, pp. 81-90, 2007. [15]E. Creighton, A. Honegger, A. Tulsian, and D. Mukhopadhyay, “Analysis of thermal errors in a high-speed micro-milling spindle,” International Journal of Machine Tools and Manufacture, vol. 50, no. 4, pp. 386-393, Apr. 2010. [16]Y. C. Wang, M. C. Kao, and C. P. Chang, “Investigation on the spindle thermal displacement and its compensation of precision cutter grinders,” Measurement, vol. 44, no. 6, pp. 1183-1187, Jul. 2011. [17]W. Wang, Y. Zhang, K. Fan, and J. Yang, “A Fourier Series-Neural Network Based Real-Time Compensation Approach for Geometric and Thermal Errors of CNC Milling Machines,” Advances in Mechanical Engineering, vol. 5, Jan. 2013. [18]J. Yang, H. Shi, B. Feng, L. Zhao, C. Ma, and X. Mei, “Applying Neural Network based on Fuzzy Cluster Pre-processing to Thermal Error Modeling for Coordinate Boring Machine,” Procedia CIRP, vol. 17, pp. 698-703, 2014. [19]M. Gebhardt, J. Mayr, F. Nils, T. Widmer, S. Weikert and W. Knapp, “High precision grey-box model for compensation of thermal errors on five-axis machines,” vol. 63, pp.509-512, Mar. 2014. [20]Ali M. Abdulshahed, Andrew P. Longstaff, and Simon Fletcher, “The application of ANFIS prediction models for thermal error compensation on CNC machine tools,” Applied Soft Computing, vol. 27, pp. 158-168, Feb. 2015. [21]Ali M. Abdulshahed, Andrew P. Longstaff, Simon Fletcher, and Alan Myers, “Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera,” Applied Mathematical Modelling, vol. 39, no. 7, pp. 1837-1852, Apr. 2015. [22]E. Miao, Y. Liu, H. Liu, Z. Gao and W. Li, “Study on the effects of changes in temperature-sensitive points on the thermal error compensation model for CNC machine tool,” International Journal of Machine Tools and Manufacture, vol. 97, pp. 50-59, Oct. 2015. [23]Y. Li, W. Zhao, S. Lan, J. Ni, W. Wu and B. Lu, “A review on spindle thermal error compensation in machine tools,” vol. 95, pp. 20-38, Aug. 2015. [24]A. M. Abdulshahed, A. P. Longstaff, S. Fletcher, and A. Potdar, “Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model,” Journal of Manufacturing Systems, vol. 41, pp. 130-142, Oct. 2016. [25]Fuat Kara, Kubilay Aslantas, and Adem Cicek, “Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network,” Applied Soft Computing, vol. 38, pp. 64-74, Jan. 2016. [26]K. Liu, M. Sun, T. Zhu, Y. Wu and Y. Liu, “Modeling and compensation for spindle’s radial thermal drift error on a vertical machining center,” vol. 105, pp. 58-67, Jun. 2016. [27]P. Blaser, F. Pavlicek, K. Mori, J. Mayr, S. Weikert and K. Wegener, “Adaptive learning control for thermal error compensation of 5-axis machine tools,” Journal of Manufacturing Systems, vol. 44, no. 2, pp. 302-309, Jul. 2017. [28]X. Wang, H. Zhang, Y. Chen and Y. Liu, “Study of Thermal Sensitive Point Simulation and Cutting Trial of Five Axis Machine Tool Based on Genetic Algorithm,” Procedia Engineering, vol. 174, pp. 550-556, Jan. 2017. [29]M. Mares and O. Horejs, “Modeling of Cutting Process Impact on Machine Tool Thermal Behaviour Based on Experimental Data,” vol. 58, pp. 152-157, Mar. 2017. [30]H. Liu, E. Miao, X. Zhuang and X. Wei, “Thermal error robust modeling for CNC machine tools based on a split unbiased estimation algorithm,” Precision Engineering, vol. 51, pp.169-175, Jan. 2018.
|