|
1.Abel, S.D.A. and S.K. Baird, Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: Considerations for the choice of cell viability assay. Food Chem, 2018. 241: p. 70-78. 2.Ewnetu, Y., W. Lemma, and N. Birhane, Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC Complement Altern Med, 2013. 13: p. 269. 3.Chuttong, B., et al., Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem, 2016. 192: p. 149-55. 4.N, K., et al., Species Diversity and External Nest Characteristics of Stingless Bees in Meliponiculture. Vol. 37. 2014. 293-298. 5.Bahri, S., et al., The sustainable integration of meliponiculture as an additional income stream for rubber smallholders in Malaysia. 2016. 6.White, J.W., Honey, in Advances in Food Research, C.O. Chichester, Editor. 1978, Academic Press. p. 287-374. 7.Sousa, J.M., et al., Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Research International, 2016. 84: p. 61-68. 8.Alvarez-Suarez, J.M., F. Giampieri, and M. Battino, Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr Med Chem, 2013. 20(5): p. 621-38. 9.Ouchemoukh, S., et al., Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT - Food Science and Technology, 2017. 85: p. 460-469. 10.Habib, H.M., et al., Physicochemical and biochemical properties of honeys from arid regions. Food Chem, 2014. 153: p. 35-43. 11.Rodriguez, B.A., et al., Quality parameters and antioxidant and antibacterial properties of some Mexican honeys. J Food Sci, 2012. 77(1): p. C121-7. 12.Shantal Rodríguez Flores, M., O. Escuredo, and M. Carmen Seijo, Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys. Food Chemistry, 2015. 166: p. 101-106. 13.Alvarez-Suarez, J.M., et al., Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food and Chemical Toxicology, 2012. 50(5): p. 1508-1516. 14.Silva, T.M.S., et al., Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis, 2006. 19(6): p. 507-511. 15.Silva, T.M.S., et al., Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. Journal of Food Composition and Analysis, 2013. 29(1): p. 10-18. 16.Pimentel, R.B.d.Q., et al., Antimicrobial activity and rutin identification of honey produced by the stingless bee Melipona compressipes manaosensis and commercial honey. BMC Complementary and Alternative Medicine, 2013. 13(1): p. 151. 17.Vorlova, L., et al., The antimicrobial activity of honeys produced in the Czech Republic. Czech Journal of Animal Science, 2005. 50(8): p. 369. 18.Zulueta, A., M.J. Esteve, and A. Frígola, ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, 2009. 114(1): p. 310-316. 19.Kustiawan, P.M., et al., In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pac J Trop Biomed, 2014. 4(7): p. 549-56. 20.Tonks, A., et al., Stimulation of TNF-alpha release in monocytes by honey. Cytokine, 2001. 14(4): p. 240-2. 21.Tonks, A.J., et al., Honey stimulates inflammatory cytokine production from monocytes. Cytokine, 2003. 21(5): p. 242-7. 22.Osato, M.S., S.G. Reddy, and D.Y. Graham, Osmotic effect of honey on growth and viability of Helicobacter pylori. Dig Dis Sci, 1999. 44(3): p. 462-4. 23.Medzhitov, R. and C.A. Janeway, Jr., Decoding the patterns of self and nonself by the innate immune system. Science, 2002. 296(5566): p. 298-300. 24.Dhingra, A.K., et al., An update on Anti-inflammatory Compounds: A Review. Antiinflamm Antiallergy Agents Med Chem, 2015. 14(2): p. 81-97. 25.Commission., E., Information notices on occupational diseases: a guide to diagnosi. 2009: p. P121-124. 26.Simic, M.G., Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat Res, 1988. 202(2): p. 377-86. 27.Fridovich, I., Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem, 1997. 272(30): p. 18515-7. 28.中華民國國家標準 CNS1305, N5204. 民國一百零四年. 29.中華民國國家標準 CNS12635, N6224. 民國九十三年. 30.Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1): p. 248-254. 31.Taga, M.S., E.E. Miller, and D.E. Pratt, Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 1984. 61(5): p. 928-931. 32.Zhishen, J., T. Mengcheng, and W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999. 64(4): p. 555-559. 33.Nagai, T., et al., Antioxidant properties of enzymatic hydrolysates from royal jelly. J Med Food, 2006. 9(3): p. 363-7. 34.Benzie, I.F. and J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem, 1996. 239(1): p. 70-6. 35.Halvorsen, B.L., et al., A systematic screening of total antioxidants in dietary plants. J Nutr, 2002. 132(3): p. 461-71. 36.Oyaizu, M., Studies on products of browning reaction: anti-oxidative activity of products of browning reaction prepared from glucosamine. Jpn. J. Nutr., 1986. 44: p. 307-315. 37.Irshad, M., et al., Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. Int J Med Chem, 2012. 2012: p. 157125. 38.Ahn, C. and M.E. Stiles, Antibacterial activity of lactic acid bacteria isolated from vacuum-packaged meats. J Appl Bacteriol, 1990. 69(3): p. 302-10. 39.羅金蓮,蘇新元, 加工與儲存對蜂蜜品質影響之研究. 台灣省蠶蜂業改良場,農特產品加工研討會, 民國八十四年. 40.Montenegro, G. and C. Fredes, Contenido de metales pesados y otros elementos traza en mieles de abeja en Chile. 2018. 41.Ramón-Sierra, J.M., J.C. Ruiz-Ruiz, and E. de la Luz Ortiz-Vázquez, Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys. Food Chemistry, 2015. 183: p. 43-48. 42.Babarinde, G.O., et al., Effects of harvesting methods on physicochemical and microbial qualities of honey. Journal of food science and technology, 2011. 48(5): p. 628-634. 43.Tuksitha, L., et al., Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology, 2018. 21(2): p. 563-570. 44.Sancho, M.T., et al., Nonaromatic Organic Acids of Honeys, in Pot-Honey: A legacy of stingless bees, P. Vit, S.R.M. Pedro, and D. Roubik, Editors. 2013, Springer New York: New York, NY. p. 447-458. 45.Nordin, A., et al., Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. Journal of Food Composition and Analysis, 2018. 46.Habib, H.M., et al., Physicochemical and biochemical properties of honeys from arid regions. Food Chemistry, 2014. 153: p. 35-43. 47.Gasic, U., et al., Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem, 2014. 145: p. 599-607. 48.Liu, J.-R., et al., Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chemistry, 2013. 139(1): p. 938-943. 49.Singh Kirnpal-Kaur, B., et al., Different Solid Phase Extraction Fractions of Tualang (Koompassia excelsa) Honey Demonstrated Diverse Antibacterial Properties Against Wound and Enteric Bacteria. Vol. 3. 2011. 59-65. 50.Tenore, G.C., et al., Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food Chem Toxicol, 2012. 50(6): p. 1955-61. 51.Gismondi, A., G. Di Marco, and A. Canini, Detection of plant microRNAs in honey. PLOS ONE, 2017. 12(2): p. e0172981. 52.Di Marco, G., et al., Geographical, botanical and chemical profile of monofloral Italian honeys as food quality guarantee and territory brand. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 2017. 151(3): p. 450-463. 53.Nascimento, K.S.d., et al., Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT, 2018. 91: p. 85-94. 54.Granato, D., et al., Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. TrAC Trends in Analytical Chemistry, 2016. 80: p. 266-279. 55.Jenkins, R., N. Burton, and R. Cooper, Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother, 2011. 66(11): p. 2536-42. 56.Mathews, K. and A. G. Binnington, Wound Management Using Honey. Vol. 24. 2001. 57.Mani-López, E., H.S. García, and A. López-Malo, Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 2012. 45(2): p. 713-721. 58.Park, S.H., et al., Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J Food Sci, 2011. 76(6): p. M293-8. 59.Ricke, S.C., Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci, 2003. 82(4): p. 632-9. 60.(Ed.), R.S., Natural Antimicrobials for the Minimal Processing of Foods. 2003: p. 98-132. 61.Qazi, B.S., K. Tang, and A. Qazi, Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int J Inflam, 2011. 2011: p. 908468.
|