一、英文部分
1.Berry, M. J. A. and Linoff, G., Data Mining Techniques: for Marketing, Sales and Customer Support, John-Wiley & Sons Inc., New York (1997).
2.Berson, A., Smith, S. and Thearling, K., Building Data Mining Application for CRM, McFraw-Hill Inc., New York (2000).
3.Bishop, C., “Neural networks for pattern recognition,” Oxford University Press, (1995).
4.Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G. S. and Simoudis, E.,”Mining business databases,” Communication of the ACM, 39(11), 42-48 (1996).
5.Cha, I. and Kassam, S. A., ”Channel equalization using adaptive complex radial basis function network,” IEEE Journal on Selected Areas in Communications, 13, 122-131 (1995).
6.Cybenko, G., ”Approximation by superposition of a sigmoidal function,” Mathematics of Control, Signals, and Systems, 2, 303-314 (1989).
7.Davies, P. C., “Design issues in neural network development,” Neurovest Journal, 5, 21-25 (1994).
8.Eksioglu, M., Fernandez, J. E. and Twomey, J. M., “Prediction peak pinch strength: artificial neural networks vs. regression,” International Journal of Industrial Ergonomics, 18, 431-441 (1996).
9.Fahlman, S. E. and Lebiere, C., “The cascade-correlation learning architecture. In: D. Touretzsky (Ed.),” Advance in Neural Information Processing, 598-605 (1990).
10.Fayyad, U. M.and Piatetsky, G. S., “The KDD process for extracting useful knowledge from volumes of data,” Commun ACM, 39(11), 27-34 (1996).
11.Fish, K. E., Barnes, J. H. and Aiken, M. W., “Artificial neural networks: a new methodology for industrial market segmentation,” Industrial Marketing Management, 24, 431-438 (1995).
12.Freeman, M. L. and Skapura, D. M., Neural Networks Algorithms, Applications and Programming Techniques, Addision-Wesley, New York (1992).
13.Goh, B. H., “Residential construction demand forecasting using economic indicators: a comparative study of artificial neural networks and multiple regression,” Construction Management and Economics, 14, 25-34 (1996)
14.Golub, G. and Kahan, W., “Calculating the singular values and pseudo-inverse of a matrix,” SIAM Numerical Analysis, B 2(2), 205-224 (1965).
15.Ham, F. M. and Kostanic, I., Principle of Neurocomputing for Science and Engineering, McGraw-Hill Inc., New York (2000).
16.Hand, D., Mannila, H. and Smyth, P., “Principles of data mining,” MIT Press, Cambridge, MA (2001).
17.Haykin, S., Neural Networks-A Comprehensive Foundation, Prentice-Hall, New York, (1994).
18.Hertz, J., Krogh, A. and Palmer, R. G., Introduction to the Theory of Neural Computation, Addision-Wesley, New York (1991).
19.Hornik, K., Stinchcombe, M. and White, H.,”Multilayer feedforward networks are universal approximators,” Neural Networks, 2, 359-366 (1989).
20.Hush, D. R., Salas, J. M. and and Horne, B., ”Error surfaces for multilayer perceptrons,” IEEE Transactions on Systems, Man and Cybernetics, 22 (1992).
21.Hush, D. R. and Horne, B., ”Progress in supervised neural networks: what’s new since Lippmann,” IEEE Signal Processing Magazine, January (1993).
22.Kim, K. B., Park, J. B., Choi, Y. H. and Chen, G., ”Control of chaotic dynamical systems using radial basis function network approximators,” Information Science, 130, 165-183 (2000).
23.Lapedes, A., Farber, R., “How neural networks. in: D. Z. Anderson (Ed.),” Neural and Information Processing System, American Institute of Physics, 442-556 (1988).
24.LeCun, Y., Denker, J. S. and Solla, S. A., “Optimal brain damage. in: D. Touretzsky (Ed.),” Advance in Neural Information Processing, 598-605 (1990).
25.Leonard, J. A. and Kramer, M. A., “Radial basis function networks for classifying process faults,” IEEE Control Systems Magazine, 11, 31-39 (1991).
26.Manoharran, S. C. ,Veezhinathan, M. and Ramakrishnan, S., ”Comparison of two ANN methods for classification of spirometer data,” Measurement Science Review, Vol.8, Sec.2, No.3 (2008)
27.McCulloh, W. S. and Pitts, W., “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, 5, 115-133 (1943).
28.MESA International white Paper No.6 (1997).
29.Minsky, M. L. and Papert, S. A., “Perceptrons,” MIT Press Cambridge, MA (1969).
30.Montgomery, D. C., Design and Analysis of Experiment, 6th, John-Wieley, Chapter 10, 179-193 (2005).
31.Moody, J. and Darkin, C. J., “Fast learning in networks of locally-tuned processing units,” Neural Computation, No. 1(2), 281-294 (1989).
32.Park, J. and Sandberg, I. W., ”Universal approximation using radial basis function networks,” Neural Computation, 3(2), 246-257 (1991).
33.Rumehhart, D. E., Hinton, G. E. and Willaims R. J., “Parallel distributed processing,” MIT Press, Cambridge, MA, 1, 318-364 (1986).
34.Sahin, F., “A radial basis function approach to a color image classification problem in a real time industrial application,” Master''s Thesis, etd-6197-223641 (1997).
35.Sahoo, G. B., Ray, C., Wang, J. Z., Hubbs, S. A., Song, R., Jasperse, J. and Seymour, D., ”Use of artificial neural networks to evaluate the effectiveness of riverbank filtration,” Water Research, 39, 2505-2516 (2005).
36.Tanis, E. A. and Hogg, R., Hogg Probability and Statistical Inference, 7th ed., Prentice Hall , New York (2005).
37.Vellido, A., Lisboa, P. J. G. and Vaughan, J., “Neural networks in business: a survey of applications,” Expert Systems with Applications, 17, 51-70 (1999).
二、中文部分
1.莊達人,「VLSI製造技術」,高立圖書股份有限公司,台北,1990。
2.姜庭隆,「半導體製程」,滄海書局,台中,2001。
3.葉怡成,「神經網路模式應用與實作」,儒林圖書有限公司,台北 2004。
4.張詠棨,「半徑基底函數(RBF)類神經網路應用於LED晶圓缺陷檢測」,雲林科技大學資工所碩士論文,雲林,2006。5.孔祥竹,「應用類神經網路減少TFT-LCD產品測試項目之研究」,交通大學工管所碩士論文,新竹,2007。三、網路部分
1.半導體製造流程圖,http://www.necel.com/fab/en/flow.html
2.維基百科,類神經網路歷史,http://zh.wikipedia.org/wiki/.
3.MES Introduction, http://articles.e-works.net.cn/mes/Article35593.htm