參考文獻
1.Aradhye, H. B., B. R. Bakshi, R. A. Strauss, and J. F. Davis, “Multisacle SPC using wavelets-theoretical analysis and properties,” AICHE Journal, 49, 939-958 (2003).
2.Crowder, S. V. and Hamilton, M. D., “An EWMA for monitoring a process standard deviation,” Journal of Quality Technology, 24, 12-21 (1992).
3.Cheng, C. S., “A neural network approach for the analysis of control chart patterns,” International Journal of Production Research, 35, 667-697 (1997).
4.Cheng, C. S., and Hubele N. F., “A pattern recognition algorithm for an control chart,” IIE Transactions, 28, 215-224 (1996).
5.Donoho, D. L., and Johnston, I. M., “Ideal spatial adaptation via wavelet shrinkage, “Biometrika, 81, 425-455 (1994).
6.Donoho, D. L., “De-noising by soft-thresholding, “IEEE Trans, 41, 3, 613-627 (1995).
7.Duncan, A. J., Quality Control and Industrial Statistical (4th), Illinois: Richard D. Irwin, Inc, (1974).
8.Gilbert Strang, “Wavelet transforms versus Fourier transforms,” Appeared in Bulletin of the American Mathematical Society, 28, 288-305 (1993).
9.Grant, E. L. and Leavenworth, R. S., Statistical Quality Control, McGraw-Hill Book Company., NY (1988).
10.Hassan, A., Shariff Nabi Baksh, M., Shaharoun, A. M., and Jamaluddin, H., “Improved SPC chart pattern recognition using statistical features,” International Journal of Production Research, 41, 1587-1603 (2003).
11.Hwarng, H. B., and Chong, C. W., “Detecting process non-randomness through a fast and cumlative learning ART-based pattern recognizer,” International Journal of Production Research, 33, 1817-1833 (1994).
12.Hwarng, H. B., and Hubele, N. F., “Back-propagation pattern recognizers for X-bar control chart: Methodology and Performance,” Computers and Industrial Engineering, 24, 219-235 (1993).
13.Hwarng, H. B. and Hubele, N. F., “ control chart pattern identification through efficient off-line neural network training,” IIE Transactions, 25, 27-40 (1993).
14.Daubechies, I., “Ten lectures on Wavelets,” SIAM (1992).
15.Lucas, J. M., “Combined Shewhart-CUSUM quality control schemes,” Journal of Quality Technology, 14, 51-59 (1982).
16.Lucas, J. M., and Crosier, R. B., “Fast initial response for CUSUM quality-control schemes: give your CUSUM a head start,” Technometrics, 24, 199-205 (1982).
17.MacCarthy, B. L. and Thananya Wasusri, “A review of non-standard applications of statistical process control (SPC) charts,” The International Journal of Quality & Reliability Management, 19, 295-320 (2002).
18.Montgomery, D. C., Introduction to Statistical Quality Control, edition 5th, Weily (2004).
19.Nelson. L. S., “The Shewhart control chart-tests for special cause,” Journal of Quality Technology, 16, 4, 237-239 (1984).
20.Nelson, L. S., “Interpreting Shewhart X-bar control charts,” Journal of Quality Technology, 17, 114-116 (1985).
21.Page, E. S., “Continuous inspection schemes,” Biometrika, 41, 100-115 (1954).
22. Pham, D. T. and Wani, M. A., “Feature-based control chart pattern recognition,” Int. J. Prod. Res., 35, 1875-1890 (1997).
23.Guh, R. S., Zorriassatine, F., Tannock, J. D. T., and O’Brian, C., “On-line control chart pattern detection and discrimination-a neural network approach,” Artificial Intelligence in Engineering, 13, 413-425 (1999).
24.Guh, R. S., and Hsieh, Y. C., “A neural network based model for abnormal pattern recognition of control charts,” Computers & Industrial Engineering, 36, 97-108 (1999).
25.Guh, R. S., and Tannock, J. D. T., “Recognition of control chart concurrent patterns using a neural network approach,” International Journal of Production Research, 37, 1743-1765 (1999).
26.Guh, R. S., “Integrating Artificial Intelligence into On-line Statistical Process Control,” Quality and Reliability Engineering International, 19, 1-20 (2003).
27.Roberts, S. W., “Properties of control chart zone tests,” Bell System Technical Journal, 37, 83-113 (1958).
28.Roberts, S. W., “Control chart tests based on geometric moving averages,” Technometrics, 1, 239-250 (1959).
29.Swift, J. A., “Development of a knowledge based expert system for control chart pattern recognition and analysis,” The Oklahoma State, December (1987).
30.Yousef Al-Assaf, “Recognition of control chart patterns using multi-resolution wavelets analysis and neural networks,” Computers & Industrial Engineering, 47, 17-29 (2004).
31.Zhang, W. Q., and Song, G. X., “A translation-invariant wavelet de-noising method based on a new thresholding function,” second international conference on machine learnng and cybernetics, 2341-2345 (2003).
32.Zorriassatine, F. and Tannock, J. D. T., “A review of neural networks for statistical process control,” Journal of Intelligent Manufacturing, 9, 209-224 (1998).
33.Western Electric Company, Statistical Quality Control Handbook, Western Electric Co. Inc., Indianapolis, Indiana (1958).
34.林裕章,類神經網路應用於統計製程管制分隨機性樣式之研判,中壢,元智工學院,工業工程研究所碩士論文,1992。
35.謝昆霖,類神經網路在品質管制上之應用:非隨機性變化之偵測,中壢,元智工學院,工業工程研究所碩士論文,1994。36.蔡政良,以特徵為基之管制圖非隨機性樣式的辨識-使用類神經網路,中壢,元智大學工業工程與管理研究所,1996。37.林榮和,應用類神經網路於管制圖非隨機性樣式之辨識,中壢,元智大學工業工程與管理研究所,1999。38.陳信嘉,管制圖非隨機樣式之辨識及參數之估計,中壢,元智大學工業工程與管理研究所,1999。