|
[1]鄭玉峰、李莉(2009年,12月),生物用材料學,西安:西北工業大學出版社。 [2]王盈錦(民91),生物醫學材料。臺北市:合計圖書出版社。 [3]崔福齋、馮慶玲(2004年,9月),生物材料學,北京:清華學出版社。 [4]俞耀庭、張興樑(2000年,12月),生物醫用材料,天津:天津大學出版社。 [5]D. L. Nelson, and M. M. Cox, (2000), “Lehninger principles of biochemistry,” 3rd ed., Worth Publishers. [6]崔福齋、鄭傅林編著(民95),仿生材料,新北市:新文京開發出版社。 [7]M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, (2006), “Magnesium and its alloys as orthopedic biomaterials: A review”, Biomaterials, 27, 1728-1734. [8]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, (1976), “Introduction to Ceramics”,2nd ed, p368, New York,Wiley. [9]D. R. Askeland, (1994), “The science and engineering of materials”, 3rd ed., PWS publishing Co., Boston, USA. [10]D. F. Williams, (1998), “Biocompatibility of clinical implant materials”, CRC press, Inc., Boca Raton, Fl. , USA, 99-127. [11]J. B. Park, (1984), “Biomaterials science and engineering”, Plenum press. [12]L. L. Hench, and J. M. Polak, (2002), “Third-generation biomedical materials”, Science, 295, 1014-1017. [13]H. Waizy, J. M. Seitz, and J. Reifenrath, A. Weizbauer, (2013),“Biodegradable magnesium implant for orthopedic applications”, Journal of Materials Science, 48, 39-50. [14]Y. Chen, Z. Xu, C. Smith, and J. Sankar, (2014) ,“Recent advances on the development of magnesium alloys for biodegradable implants”, Acta Biomater, 10, 4561-4573. [15]C. Hall, (1988), “Polymer Materials: an introduction for technologists and scientists”, 2nd ed, John Wiley & Sons, New York. [16]B. D. Halpern, (1971), “Medical applications in Encyclopedia of polymer science and technology”, 8, 516. [17]D. F. Williams, (1998), “Biocompatibility of clinical implant materials”, Chapter 2 in volume 2, CRC press, Inc. , Boca Raton, Fl. , USA. [18]M. M. Avedesian, and H. Baker, (1999), “ASM Specialty Handbook-Magnesium and Magnesium Alloys”, Mater. Information Society, pp, 14-15. [19]Y. Song, E. H. Han, D. Shan, C. D. Yim, and B. S. You, (2012),“The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys”, Corrosion science, 65, 322-330. [20]J. Nagels, M. Stokdijk, and P. M. Rozing, (2003), “Stress shielding and bone resorption in shoulder arthroplasty”, J Shoulder Elbow Surg, 12, 35-39. [21]H. M. Wong, W. K. Yeung, K. O. Lam, V. Tam, P. K. Chu, D. K. Luk, and M.C. Cheung, (2010), “A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants”, Biomaterials, 31, 2084-2096. [22]M. Speich, B. Bousquet, and G. Nicolas, (1981), “Reference values for Ionized, complexed, and protein-bound plasma magnesium in men and women”, Clinical Chemistry, 27, 246-248. [23]A. Hoppe, N. S. Güldal, and A. R. Boccaccini, (2011), “A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics”, Biomaterials, 32, 2757-2774. [24]B. Zberg, P. J. Uggowitzer, and J. F. Loffler, (2009), “MgZnCa glasses Without clinically observable hydrogen evolution for Biodegradable implants”, Nature Mater, 8, 887-891. [25]Z. Shi, F. Cao, G. L. Song, M. Liu, and A. Atrens, (2013), “Corrosion behaviour in salt spray and in 3.5%NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys: RE = Ce, La, Nd, Y, Gd”, Corrosion science, 76, 98-118. [26]H. Hornderger, S. Virtanen, and A. R. Boccaccini, (2012), “Biomedical Coating on magnesium alloys-A review”, Acta Biomater, 8, 2442-2455. [27]H. X. Wang, S. K. Guan, X. Wang, C. X. Ren, and L. G. Wang, (2010), “In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process”, Acta Biomater, 6, 1743-1748. [28]Y. Wang, M. Wei, and J. C. Gao, (2009), “Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating”, Materials Science and Engineering: C, 29, 1311-1316. [29]L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, (2009), “In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy”, Biomaterials, 30,1512-1523. [30]B. L. Yu, X. L. Pan, and J. Y. Uan, (2010), “Enhancement of corrosion resistance of Mg-9wt.%Al-1wt.%Zn alloy by a calcite (CaCO3) conversion hard coating”, Corrosion science, 52, 1874-1878. [31]Y. W. Song, D. Y. Shan, and E. H. Han, (2008), “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application”, Materials Letters, 62, 3276-3279. [32]J. K. Lin, and J. Y. Uan, (2009), “Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3–/CO32–and corresponding protection against corrosion by the coating”, Corrosion science, 51, 1181-1188. [33]Y. Y. Zhu, G. M. Wu, Y. H. Zhang, and Q. Zhao, (2011), “Growth and characterization of Mg(OH)2film on magnesium alloy AZ31”, Applied Surface Science, 257, 6129-6137. [34]J. Y. Uan, J. K. Lin, Y. S. Sun, W. E. Yang, L. K. Chen, and H. H. Huang, (2010), “Surface coatings for improving the corrosion resistance and cell adhesion of AZ91D magnesium alloy through environmentally clean methods”, Thin Solid Films, 518, 7563-7567. [35]C. W. Yang, (2015), “Development of hydrothermally synthesized hydroxyapatite coatings on metallic substrates and Weibull’s reliability analysis”, International Journal of Applied Ceramic Technology, 12, 2, 282-293. [36]G. K. Toworfe, R. J. Composto, I. M. Shapiro, and P. Ducheyne, (2006), “Nucleation and growth of calcium phosphate on amine-, carboxyl-and hydroxyl-silane self-assembled monolayers”, Biomaterials, 27, 631-642. [37]M. Frasnelli, F. Cristofaro,V. M. Sglavoa, S. Dirè, E. Callonea, R. Ceccato, G. Bruni, A. I. Cornaglia, L. Visai, (2017), “Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration”, 71, 653-662. [38]梁哲嘉、楊崇煒(2017年), “水熱合成鍶取代型氫氧基磷灰石鍍層改善生物可降解性AZ91鎂合金在模擬體液之抗腐蝕效應研究”。 [39]J. W. McCutchen, J. P. Collier, and M. B. Mayer, (1990), “Osseointegration of titanium implants in total hip arthroplasty”, Clinical Orthopaedics and Related Research, 261, 114-125. [40]W. Hu, J. Ma, J. L. Wang, and S. M. Zhang, (2012), “Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles”, Materials Science and Engineering: C, 32, 2404-2410. [41]C. Ke, Y. Wu, Y. Qiu, J. Duan, N. Birbilis, and X. B. Chen, (2016), “Influence of surface chemistry on the formation of crystalline hydroxide coatings on Mg alloys in liquid water and steam systems”, Corrosion science, 113, 145-159. [42]R. Rojaee, M. Fathia, K. Raeissi, A. Sharifnabi, (2014), “Biodegradation assessment of nanostructured fluoridated hydroxyapatite coatings on biomedical grade magnesium alloy”, Ceramics International, 40, 15149-15158. [43]H. Yang, K. Xia, T. Wang, J. Niu, Y. Song, Z. Xiong, K. Zheng, S. Wei, and W. Lu, (2016), “Growth, in vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys”, Journal of Alloys and Compounds, 672, 366-373. [44]T. Goto, I. Y. Kim, K. Kikuta, and C. Ohtsuki, (2012), “Hydrothermal synthesis of composites of well-crystallized hydroxyapatite and poly(vinyl alcohol) hydrogel”, Materials Science and Engineering: C, 32, 397-403. [45]P. Yin, F. F. Feng, T. Lei, and X. C. Jian, (2012), “Colloidal-sol gel derived biphasic FHA/SrHA coatings”, Surface and Coatings Technology, 207, 608-613. [46]T. Okuda, K. loku, L. Yonezawa, H. Minagi, Y. Gonda, G. Kawaachi, M. Kamitakahara, Y. Shibata, H. Murayama, H. Kurosawa, and T. lkeda, (2008), “The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite”, Biomaterials, 29, 18, 2719-2728. [47]Y. Lei, Z. Xu, Q. Ke, W. Yin, Y. Chen, C. Zhang, and Y. Guo, (2017), “Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering”, Materials Science and Engineering C, 72, 134-142. [48]Z. Geng, Z. Cui, Z. Li, S. Zhu, Y. Liang, Y. Liu, X. Li, X. He,X. Yu, R. Wang, and X. Yang, (2016), “Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating”, Materials Science and Engineering C, 58, 467-477. [49]M. Frasnelli, F. Cristofaro, V. M. Sglavo, S. Dirè, E. Callone, R. Ceccato, G. Bruni, A. I. Cornagli, and L. Visai, (2017), “Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration”, Materials Science and Engineering C, 71, 653-662. [50]V. Sanyal, C. R. Raja, (2016), “Synthesis, characterization and in-vitro studies of strontium-zinc co-substituted fluorohydroxyapatite for biomedical applications”, Jourmal of Non-Crystalline Solids, 445-446, 81-87. [51]Y. Shen, J. Liu, K. Lin, and W. Zhang, (2012), “Synthesis of strontium substituted hydroxyapatite whiskers used as bioactive and mechanical reinforcement material”, Materials Letters, 70, 76-79. [52]M. Sundfeldt, M. Widmark, A. Wennerberg, J. Karrholm, C. B. Johansson, and L. V. Carlsson, (2002), “Does sodium fluoride in bone cement affect implant fixation? Part I: Bone tissue response, implant fixation and histology in nine rabbits”, Journal of Materials Science: Materials in Medicine, 13, 1037-1043. [53]K. H. Lau, C. Goodwin, M. Arias, S. Mohan, and D. J. Baylink, (2002), “Bone cell mitogenic action of fluoroaluminate and aluminum fluoride but no that of sodium fluoride involves upregulation of the insulin-like growth factor system”, Bone, 30, 705-711. [54]J. Harrison, A. J. Melville, J. S. Forsythe, B. C. Muddle, A. O. Trounson, K. A. Gross, and R. Mollarda, (2004), “Sintered hydroxyfluorapatites — IV: the effect of fluoride substitutions upon colonization of hydroxyapatite by mouse embryonic stem cells”, Biomaterials, 25, 4977-4986 [55]N. Zhang, D. Zhai, L. Chen, Z. Zou, K. Lin, and J. Chang, (2014), “Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors”, Materials Science and Engineering C, 37, 286-291. [56]Y. Huang, Q. G. Ding, X. F. Pang, S. Han, and Y. Yan, (2013), “Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings”, Applied Surface Science, 282, 456-462. [57]J. Wang, Y. Chao, Q. Wan, Z. Zhu, and H. Yu, (2009), “Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition”, Acta Biomater, 5, 1798-1807. [58]D. Shi, (2004), “Biomaterials and Tissue Engineering”, Springer, Berlin, Heidelberg, Printed in Germany, 5-8. [59]黃志良,王大偉,劉羽,(2001) ,氫氧基磷灰石(HA)製備方法及其研究展武漢化工學院學報, 23, 49-53. [60]M. Yoshimura, and H. Suda, (1994), “Hydrothermal Processing of Hydroxyapatite: Past, Present and Future”, in:“Hydroxyapatite and Related Materials”, edited by P. W. Brown, and B. Constanz, CRC Press Inc, Boca Raton, Florida, pp, 45-72. [61]T. Kijima, and M. Tsutsumi, (1979), “Preparation and thermal properties of dense poly-crystalline oxyhydroxyapatite”, Journal of the American Ceramic Society, 62, 455-460. [62]H. J. A. Vandijk, N. Hattu, and K. Prijs, (1981), “Preparaction microstructure and mechacnical properties of dense polycrystalline hydroxyapatite”, Journal of Materials Science, 16, 1592-1598. [63]J. S. Earl, D. J. Wood, and S. J. Milne, (2006),“Hydrothermal synthesis of hydroxyapatite”, Journal of Physics: Conference Series, 26, 26-71. [64]R. Zhu, R. Yu, J. Yao, D. Wang, and J. Ke, (2008), “Morphology control of hydroxyapatite through hydrothermal process”, Journal of Alloys and Compounds, 457, 555-559. [65]M. Yoshimura, and K. Byrappa, (2008), “Hydrothermal processing of materials: past, present and future”, Journal of Materials Science, 43, 2085-2103. [66]J. Shen, B. Jin, Q. Y. Jiang, Y. M. Hu, and X. Y. Wang, (2016), “Morphology-controlled synthesis of fluorapatite nano/microstructures via surfactant-assisted hydrothermal process”, Materials and Design, 97, 204-212. [67]Y. S. Hong, G. D. Zhang, J. J. Huang, and Y. Q. Hao, (2008), “The role of bone induction of biodegeradable magnesiumalloy”, Acta Metall Sinica, 44, 1035-1041. [68]C. W. Yang, and T. S. Lui, (2009), “Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings”, Acta Biomaterialia, 5, 2728-2737. [69]C. W. Yang, and T. S. Lui, (2008), “Microstructural self-healing effect of hydrothermal crystallization on bonding strength and failure mechanism of hydroxyapatite coatings”, Journal of the European Ceramic Societ, 28, 2151-2159. [70]C. W. Yang, T. S. Lui, and L. H. Chen, (2009), “Hydrothermal crystallization effect on the improvement of erosion resistance and reliability of plasma-sprayed hydroxyapatite coatings”, Thin Solid Films, 517, 5380-5385. [71]Y. Zhu, G. Wu, Y. H. Zhang, and Q. Zhao, (2001), “Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31”, Applied Surface Science, 257, 6129-6137. [72]N. Kamiyama, G. Panomsuwan, E. Yamamoto, T. Sudare , N. Saito, and T. Ishizaki, (2016), “Effect oftime in the Mg(OH)2/Mg-Al LDH composite film formed on Mg alloy AZ31 by steam coating on the corrosion resistance”, Surface and Coating Technology, 286, 172-177. [73]F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, (2010), “Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines”, Acta Biomater, 6, 1834-1842. [74]H. R. Bakhsheshi-Rad, M. H. Idris, and M. R. Abdul-Kadir, (2013), “Synthesis and in vitro degradation evaluation of thenano-HA/MgF2and DCPD/MgF2composite coating onbiodegradable Mg-Ca-Zn alloy”, Surf Coat Technol, 222, 79-89. [75]A. D. Kinga, N. Birbilis, and J. R. Scully, (2014), “Accurate Electrochemical Measurement of Magnesium Corrosio Rates; a CombinedImpedance, Mass-Loss and Hydrogen Collection Study”, Electrochimica Acta, 121, 394-406. [76]I. B. Singh, M. Singh, and S. Das, (2015), “A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution”, Journal of Magnesium and Alloys, 3, 142-148. [77]T. Kokubo, and H. Takadama, (2006), “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials, 27, 2907-2915. [78]王思涵、楊崇煒(2015年), “水熱合成含氟磷酸鈣鍍層改善生物可降解性AZ80鎂合金之腐蝕阻抗與成骨細胞反應性研究”。 [79]D. Gopi, S. Ramya, D. Rajeswari, P. Karthikeyan, L. Kavitha, (2014), “Strontium, cerium co-substituted hydroxyapatite nanoparticles: synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies”, Colloids Surf APhysicochem Eng Asp, 451, 172-180. [80]L. Leroux, and J. L. Lacount, (2000), “ Synthesis of calcium-strontium phosphate fluor-hydroxyapatites by neutralisation”, 173, 27-38. [81]L. He, G. Dong, and C. Deng, (2016), “Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation”, Ceramics International, 42, 11918-11923. [82]W. Xia, C. Lindahl, J. Lausmaa, P. Borchardt, A. Ballo, P. Thomsen, and H. Engqvist, (2010), “Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces”, Acta Biomater, 6, 1591-1600. [83]Z. Y. Li, W. M. Lam, C. Yang, B. Xu, G. X. Ni, S. A. Abbah, K. M. Cheung, K. D. Luk, and W. W. Lu, (2007), “Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite”, Biomaterials, 28, 1452-1460. [84]Y. T. Zhao, D. G. Guo, S. X. Hou, H. B. Zhong, J. Yan, C. L. Zhang, and Y. Zhou, (2013), “Porous allograft bone scaffolds: doping with strontium”, PLOS ONE . [85]A. Boyd, M. Akay, and B. J. Meenan, (2003), “Influence of target surface degradation on the properties of r.f. magnetron-sputtered calcium phosphate coatings”, Surf Interface Anal, 35, 188-198. [86]J. H. Park, D. Y. Lee, K. T. Oh, and Y. K. Lee, (2006), “Bioactivity ofcalcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid”, Materials Letters, 60, 2573-2577. [87]J. L. Ong, L. C. Lucas, G. N. Raikar, J. J. Weimer, and J. C. Gregory, (1994), “Surface characterization of ion-beam sputter-deposited Ca-P coatings after in vitro immersion”, Colloids and Surfaces, 87, 151-162. [88]C. F. Dunne, G. K. Levy, O. Hakimi, E. Aghion, B. Twomey, and K. T. Stanton, (2016), “Corrosion behaviour of biodegradable magnesium alloys with hydroxyapatite coatings”, Surface and Coatings Technology, 289, 37-44. [89]G. R. Argade, K. Kandasamy, S. K. Panigrahi, and R. S. Mishra, (2012), “Corrosion behavior of a friction stir processed rare-earth added magnesium alloy”, Corrosion science, 58, 321-326. [90]M. Y. Huang, M. J. Zhang, D. J. Yao, X. C. Chen, X. M. Pu, X. M. Liao, Z. B. Huang, and G. G. Yin, (2017), “Dissolution behavior of CaO-MgO-SiO2-based bioceramic powders in simulated physiological environments”, Ceramics International, 43, 9583-9592. [91]H. R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, M. A. M. Yajid, M. Medraj, (2014), “Fabrication and corrosion behavior of Si/HA nano-composite coatings on biodegradable Mg-Zn-Mn-Ca alloy”, Surface and Coatings Technology, 258, 1090-1099. [92]H. M. Kim, T. Himeno, T. Kokubo, and T. Nakamura, (2005), “Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid”, Biomaterials, 26, 4366-4373. [93]N. I. Z. Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P. J. Uggowitzer, and A. Atrens, (2013), “The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91”, Corrosion science, 75, 354-366. [94]Z. Shi, A. Atrens, (2011),“An innovative specimen configuration for the study of Mg Corrosion”, Corrosion science,53, 226-246.
|