1.王崇任(2011),醫院藥品消耗型態與存貨管理模組之實證研究-以北台灣某區域教學醫院為例, 高雄醫學大學碩士論文。2.何佩芸(2005),醫療供應鏈之協同規劃、預測、補貨模式建構研究,國立台北科技大學。
3.何慈(2014),台灣醫療產業之分析與行銷策略之建議,國立高雄第一科技大學碩士論文。4.余淑玲(2014),醫療衛材需求預測-時間序列分析:以中部某醫學中心為例,東海大學碩士論文。5.吳國禎(2000),資料探索在醫學資料庫之應用,中原大學碩士論文。6.呂靖文(2010),應用資料探勘技術建立行車油耗分析模型之研究,元智大學碩士論文。7.李友錚(2011),作業管理:創造競爭優勢,4/e,前程文化事業,台北。
8.李俊民、張義範(2003),「互動多模式決策支援之研究-醫院藥品存貨管理決策」,資管評論,12,139-158。9.李建、劉红星(2002),「新的數據挖掘工具-Poly Analyst」,計算機應用,22(7),28-31。
10.李虹映(2013),以就醫流向為基礎劃定急重症醫療區域,長榮大學碩士論文。11.林宇恆(2016),決策樹結合複迴歸模型預測氣溫與雨量,國立臺灣師範大學碩士論文。12.林宇健(2008),資料探勘技術應用於慢性疾病健康照護管理系統,靜宜大學碩士論文。13.徐晟熏(2015),資料探勘(Data mining)-在人力資源管理上的分析與應用,中央大學碩士論文。14.袁立德(1993),藥品消耗型態與庫存管理之實證研究-以二所群醫中心為例,國立陽明大學碩士論文。15.張亞武(2015),「發揮存量管理、零庫存優勢,提高醫院綜合效益」,醫學信息,28(6),13-14。
16.張楊全(2002),醫院物流配送作業之新模式-台大醫院結合院外與院內物流之無償配送,國立台灣大學碩士論文。17.莊逸洲、黃崇哲(2000),醫療機構人力資源管理,華杏出版公司,台北市。
18.陳元豪(2017),應用決策樹分析探討植群空間分布特徵-以曾文水庫集水區為例,中國文化大學碩士論文。19.陳佩琳(2014),以支持向量機探討植基於基因知識本體詞條之基因表現時間序列群集分析,國立台南大學碩士論文。
20.彭眾恩(2009),大氣長程傳送對台灣背景臭氧之影響:空氣胞逆軌跡線之群集分析,臺灣大學碩士論文。
21.黃國平、吳青翰、洪慈佑(2005),「緊急醫療救護案件區位模型分析」,規劃學報,32,13-30。22.楊祐嘉(2016),以決策樹探勘貨運業GPS軌跡,中華大學碩士論文。23.葉金川(1997),「全民健保採多元競爭之問題與解決對策」,台灣衛生雙月刊,359,12-16。
24.廖岳祥、賴順益、劉曉慧、廖晉宏(2010),「智慧型藥品需求量預測專家系統設計之研究」,第八屆產業管理創新研討會,台中,827-832。
25.褚志鵬、李宗儒、張育仁、陳秀育、顏進儒(2011)。供應鏈管理,八版,華泰文化,台北市。
26.褚志鵬、謝秀圓(2014),「不同藥品耗用類形預測暨庫存管理之研究」,醫務管理期刊,15(1),55-72。27.劉又慈(2007),以病人、病人家屬與醫療人員之觀點探討醫療服務品質與滿意度之研究-以台北市立聯合醫院為例,龍華科技大學碩士論文。
28.盧安琪(2002),門診醫療服務品質之實證研究,成功大學博士論文。
29.賴仕傑(2012),醫檢實驗室試劑耗材管理及需求預測資訊系統,朝陽科技大學碩士論文。
30.賴宜弘、楊雪華(2010),「台灣地區婦產科住院病患就醫特性之探討」,亞東學報,30,247-268。31.賴順益(2011),智慧型藥品需求量預測專家系統之建置, 亞洲大學碩士論文。32.謝弘一(2011),資料探勘於信用卡顧客行為評分模型之建構,輔仁大學博士論文。33.韓揆(1997),「醫院之功能,組織與管理」,公共衛生學,巨流,台北。
34.簡禎富、林鼎浩、徐紹鐘、彭誠湧(2001),「建構半導體晶圓允收測試資料挖礦架構及其實證研究」,工業工程學刊,18(4),37-48。35.簡禎富、許嘉裕(2014),資料挖礦與大數據分析,前程文化,台北。
36.闕廷諭(2000),「知識管理_新世紀醫院管理的利器」,醫院雜誌,33(1),11-16。37.蘇秀鑾(1999),醫療藥衛材供應鏈管理整合模型建構研究以甲公司為例,中原大學碩士論文。38.Anderberg, M. R. (1973). Cluster analysis for applications, Academic Press, Cambridge, MA.
39.Arrow, K. J. (1963). “Uncertainty and the Welfare Economics of Medical Care”, American Economic Review, 53(5), pp. 941-973.
40.Arrow, K. J., Harris, T., & Marschak, J. (1951). “Optimal Inventory Policy”, Econometrica: Journal of the Econometric Society, 19(3), pp. 250-272.
41.Berry, M. & Linoff, G. (1997). Data Mining Techniques for Marketing, Sales and Customer Support, John Wiley and Sons, New York.
42.Berry, M. & Linoff, G. (2004). Data Mining Techniques for Marketing, Sales, and Customer Relationship Management, 2nd ed., Wiley, Indianapolis, IN.
43.Berson, A., Smith, S., and Thearling, K. (2000). Building Data Mining Applications for CRM, McGraw-Hill, New York.
44.Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees, Chapman & Hall, New York.
45.Brow, R. G. (1963). Smoothing Forecasting and Prediction of Discrete Time Series, Prentice Hall, Englewood Cliffs, NJ.
46.Chien, C. F., & Chen, L. F. (2008). “Data Mining to Improve Personnel Selection and Enhance Human Capital: A Case Study in High-Technology Industry”, Expert Systems with Applications, 34(1), pp. 280-290.
47.Chien, C. F., & Hsu, C. Y. (2006). “A Novel Method for Determining Machine Subgroups and Backups with an Empirical Study for Semiconductor Manufacturing”, Journal of Intelligent Manufacturing, 17(4), pp. 429-439.
48.Chien, C.-F. and Chen, L. F. (2007). “Using Rough Set Theory to Recruit and Retain High-Potential Talents for Semiconductor Manufacturing”, IEEE Transactions on Semiconductor Manufacturing, 20(4), pp. 528-541.
49.Clatworthy, J., Buick, D., Hankins, M., Weinman, J., & Horne, R. (2005). “The Use and Reporting of Cluster Analysis in Health Psychology: A Review”, British Journal of Health Psychology, 10(3), pp. 329-358.
50.Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). “Cluster Analysis and Display of Genome-Wide Expression Patterns.”, Proceedings of the National Academy of Sciences, 95(25), pp. 14863-14868.
51.Elder, J. (2009). Handbook of Statistical Analysis and Data Mining Applications, Academic Press, Cambridge, MA.
52.Everitt, B. L. (1980). “Ecology of saltcedar-a plea for research”, Environmental geology, 3(2), pp. 77-84.
53.Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996a). “From Data Mining To Knowledge”, AI Magazine, 17(3), p. 37-54
54.Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996b). “The KDD process for Extracting Useful Knowledge from Volumes of Data”, Communication of ACM, 39(11), pp. 27-34.
55.Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques, Elsevier, New York.
56.Kantardzic, M. (2003). Data Mining: Concepts, Models, Methods, and Algorithms, Wiley-Interscience: IEEE Press, Hoboken, New Jersey.
57.Kass, G. V. (1980). “An Exploratory Technique for Investigating Large Quantities of Categorical Data”, Applied Statistics, 29(2), pp. 119-127.
58.Kleissner, C. (1998). “Data Mining for the Enterprise”, Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 7, pp. 295-304.
59.Lewis, C. D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting, Butterworth Scientific, Boston, MA.
60.MacQueen, J. (1967). “Some Methods for Classification and Analysis of Multivariate Observations”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), pp. 281-297.
61.Pawlak, Z. (1982). “Rough Sets”, International Journal of Computer and Information Sciences, 11(5), pp. 341-356.
62.Portney, L. G., & Watkins, M. P. (2000). Foundations of Clinical Research: Application to Practice, Prentice Hall Health, New Jersey.
63.Punj, G., & Stewart, D. W. (1983). “Cluster Analysis in Marketing Research: Review and Suggestions for Application”, Journal of Marketing Research, pp. 134-148.
64.Pyle, D. (1999). Data Preparation for Data Mining, Morgan Kaufmann, San Francisco, CA.
65.Quinlan, J. R. (1993). C4.5: Programming for Machine Learning, Morgan Kaufmann Publishers, Inc., Burlington, MA.
66.Shaw, M. J., Subramaniam, C., and Tan, G. W. (2001). “Knowledge Management and Data Mining for Market”, Decision Support Systems, 31(1), pp. 127-137.
67.Thuraisingham, B. (2000). “A Primer for Understanding and Applying Data Mining”, IT Professional, 2(1), pp. 28-31.
68.Tso, G. K., & Yau, K. K. (2007). “Predicting Electricity Energy Consumption: A Comparison of Regression Analysis, Decision Tree and Neural Networks”, Energy, 32(9), pp. 1761-1768.