[1]. R. Boyer, E.W. Collings, G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM International, Ohio, USA, 1994.
[2].高道剛,鈦銲接技術,全華科技圖書有限公司,台北市,2001。
[3].L. He, A.D. Manshadi, R.J. Dippenaar, The Evolution of Microstructure of Ti–6Al–4V Alloy During Concurrent Hot Deformation and Phase Transformation, Materials Science and Engineering: A, 549, 2012, pp.163-167.
[4].周長彬、蔡丕樁、郭央諶,銲接學,全華科技圖書股份有限公司,台北市,1993。
[5].蔡俊賢、陳慕平,電漿電弧的原理與應用,銲接與切割,3卷第5期,1993, 頁32-36。
[6].洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊,21卷第1期,2013,頁12-22。
[7].R. Banerjee, S. Nag, H.L. Fraser, A Novel Combinatorial Approach to The Development of Beta Titanium Alloys for Orthopaedic Implants, Materials Science and Engineering: C, 25(3), 2005, pp.282-289.
[8].賴耿陽,熔接專門技術用書-11.鋁熔接技術 12.銅、銅合金、鈦、鈦合金熔接技術,復漢出版社,台南市,1977。
[9].P. Liu, G.M. Zhang, T. Zhai, K.Y. Feng, Effect of Treatment in Weld Surface on Fatigue and Fracture Behavior of Titanium Alloys Welded Joints by Vacuum Electron Beam Welding, Vacuum, 141, 2017, pp. 176-180.
[10].S. Lin, J. Lin, T. Zhang, J. Li, Precipitation Behavior of α2 Phase in Ti–34Al–13Nb Alloy, Journal of Alloys and Compounds, 725, 2017, pp. 155-162.
[11].M.J. Donachie, Titanium and Titanium Alloys, A Collection of Outstanding Articles from The Technical Literature, American Society for Metals Park, Ohio, USA, 1982.
[12].盧信璋,銲後熱處理對時效鈦合金 EBW銲件之顯微組織與機械性質影響,國立交通大學,碩士論文,2012。[13].C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinheim, Germany, 2003.
[14].B.D. Smith, D.S. Shih, D.L. McDowell, Fatigue Hot Spot Simulation for Two Widmanstätten Titanium Microstructures, International Journal of Fatigue, 92, 2016, pp.116-129.
[15].A. Ducato, L. Fratini, M.L. Cascia, G. Mazzola, An Automated Visual Inspection System for The Classification of The Phases of Ti-6Al-4V Titanium Alloy, Computer Analysis of Images and Patterns, 8048, 2013, pp.362-369.
[16].T.A. Book, M.D. Sangid, Strain Localization in Ti-6Al-4V Widmanstätten Microstructures Produced by Additive Manufacturing, Materials Characterization, 122, 2016, pp.104–112.
[17].Y. Ma, H. Wang, S. Huang, J. Qiu, X. Feng, J. Lei, R. Yang, Deformation Twinning in Fatigue Crack Tip Plastic Zone of Ti-6Al-4V Alloy with Widmanstatten Microstructure, Materials Characterization, 132, 2017, pp.338-347.
[18].蕭威典,熔射覆膜技術,全華科技圖書股份有限公司,台北市,2006。
[19].W.H. Kearns, Welding Handbook, American Welding Society, Florida, USA, 1984.
[20].T. Zhang, D.T. Gawne, B. Liu, Computer Modelling of The Influence of Process Parameters on The Heating and Acceleration of Particles During Plasma Spraying, Surface and Coatings Technology, 132(2-3), 2000, pp.233-243.
[21].X. Deng, G. Zhang, T. Wang, S. Ren, Q. Cao, Z. Bai, Z. Liu, Microstructure and Wear Resistance of Mo Coating Deposited by Plasma Transferred Arc Process, Materials Characterization, 131, 2017, pp.517-525.
[22].Y.C. Lin, Y.C. Lin, Y.C. Chen, Elucidation of Microstructure and Wear Behaviors of Ti-6Al-4V Alloy Clad Tungsten Carbide Powder by GTAW Method, Journal of Coatings Technology and Research, 8(2), 2011, pp.247-253.
[23].H.J. Kim, B.H. Yoon, C.H. Lee, Wear performance of The Fe-based Alloy Coatings Produced by Plasma Transferred Arc Weld-Surfacing Process, Wear, 249(10-11), 2001, pp.846-852.
[24].董基良,銲接學,三民書局,台北,1991。
[25].徐享文,助銲劑對 1020 碳鋼及304 不銹鋼電漿銲接特性之研究,國立交通大學,博士論文,2009。[26].B. Varbai, R. Kormos, K. Májlinger, Effects of Active Fluxes in Gas Metal Arc Welding, Periodica Polytechnica Mechanical Engineering, 61(1), 2017, pp.68-73.
[27].Y.F. Gu, H. Harada, Y. Ro, Chromium and Chromium-based Alloys: Problems and Possibilities for High-temperature Service, The Journal of The Minerals, Metals & Materials Society, 56(9), 2004, pp.28–33.
[28].莊東漢,材料破損分析,五南圖書出版公司,台北,2007。
[29].R. Zhang, F. Jiang, S. Chen, Comparison of Energy Acted on Workpiece Among Twin-body Plasma Arc Welding, Non-transferred Plasma Arc Welding and Plasma Arc Welding, Journal of Manufacturing Processes, 24, 2016, pp.152-160.
[30].T. Dash, B.B. Nayak, Preparation of WC–W2C Composites by Arc Plasma Melting and Their Characterisations, Ceramics International, 39(3), 2013, pp.3279-3292.
[31].E. Maleki, O. Unal, K.R. Kashyzadeh, Effects of Conventional, Severe, Over, and Re-shot Peening Processes on The Fatigue Behavior of Mild Carbon Steel, Surface & Coatings Technology, 344, 2018, pp.75-84.
[32].M. Yang, H. Zheng, B. Qi, Z. Yang, Effect of Arc Behavior on Ti-6Al-4V Welds During High Frequency Pulsed Arc Welding, Journal of Materials Processing Technology, 243, 2017, pp.9-15.
[33]. O.M. Ivasishina, P.E. Markovsky, S.L. Semiatin, C.H. Ward, Aging Response of Coarse and Fine-grained β Titanium Alloys, Materials Science and Engineering:A, 405(1-2), 2005, pp.296–305.
[34].P.Z. Zhang, Z.H. Li, Z.Y. He, Z. Xu, G.H. Zhang, Surface Chromizing of Ti-6Al-4V by Bouble Glow Plasma Surface Alloying Technology, Ordnance Material Science and Engineering, 28(1), 2005, pp.17-20.
[35].V. Dalbauer, J. Ramm, S. Kolozsvári, C.M. Koller, P.H. Mayrhofer, On The Phase Evolution of Arc Evaporated Al-Cr-based Intermetallics and Oxides, Thin Solid Films, 644, 2017, pp.120-128.
[36].H. Yu, F. Li, J. Yang, J. Shao, Z. Wang, X. Zeng, Investigation on Laser Welding of Selective Laser Melted Ti-6Al-4V Parts: Weldability, Microstructure and Mechanical Properties, Materials Science and Engineering: A, 712, 2018, pp.20-27.
[37].C.D. Lundin, W.T. Delong, D.F. Spond, Ferrite Fissuring Relationship in Austenitic Stainless Steel Weld Metals, Welding Journal, 54, 1975, pp.241-246.
[38].W. Chuaiphan, L. Srijaroenpramong, Effect of Welding Speed on Microstructures, Mechanical Properties and Corrosion Behavior of GTA-welded AISI 201 Stainless Steel Sheets, Journal of Materials Processing Technology, 214(2), 2014, pp.402-408.
[39].陳永甡,銲接學,新文京圖書有限公司,台北市,2002,頁60-70。
[40].S. Kou, Welding Metallurgy, Wiley, New York, 1987.
[41].Y. Sun, G. Luo, J. Zhang, C. Wu, J. Li, Q. Shen, L. Zhang, Phase Transition, Microstructure and Mechanical Properties of TC4 Titanium Alloy Prepared by Plasma Activated Sintering, Journal of Alloys and Compounds, 741, 2018, pp.918-926.
[42].T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall, C.M.W. Close, Microstructure and Tensile Properties of Mechanically Alloyed Ti–6A1–4V with Boron Additions, Materials Science and Engineering, 282(1-2), 2000, pp.240-250.
[43].M.B. Mathisen, L. Eriksen, Y. Yu, O. Jensrud, J. Hjelen, Characterization of Microstructure and Strain Response in Ti−6Al−4V Plasma Welding Deposited Material by Combined EBSD and In-situ Tensile Test, Transactions of Nonferrous Metals Society of China, 24(12), 2014, pp. 3929-3943.
[44].M.S. Sawant, N.K. Jain, Investigations on Wear Characteristics of Stellite Coating by Micro-plasma Transferred Arc Powder Deposition Process, Wear, 378–379, 2017, pp.155-164.
[45].P.M. Mashinini, I. Dinaharan, J.D.R. Selvam, D.G. Hattingh, Microstructure Evolution and Mechanical Characterization of Friction Stir Welded Titanium Alloy Ti–6Al–4V Using Lanthanated Tungsten Tool, Materials Characterization, 139, 2018, pp.328-336.
[46].D.B. Wei, P.Z. Zhang, Z.J. Yao, W.P. Liang, Q. Miao, Z. Xu, Oxidation of Bouble-glow Plasma Chromising Coating on TC4 Titanium Alloys, Corrosion Science, 66, 2013, pp.43-50.
[47].Q. An, L. Huang, S. Jiang, X. Li, Y. Gao, Y. Liu, L. Geng, Microstructure Evolution and Mechanical Properties of TIG Cladded TiB Reinforced Composite Coating on Ti-6Al-4V Alloy, Vacuum, 145, 2017, pp.312-319.