[1] W.J.Frawley, G.Paitetsky-Shapiro, and C.J.Matheus, “Knowledge Discovery in Databases : An Overview Knowledge Discovery in Databases”, edited by G.Piatetsky-Shapiro and W.J.Frawley, California, AAAI/MIT Press,1991, pp.1-30.
[2] J.Elder IV, and D. Pregibon, “A statics perspective on knowledge discovery in databases”, AAAI/MIT Press, 1996, pp.83-115.
[3] U. Fayyad, G. Piatetsky-Shapiro, S. Padhraic, “From Data Mining to Knowledge Discovery in Database”, AI magazine, pp.37-54, 1996.
[4] W.J.Frawley, G.Paitetsky-Shapiro, and C.J.Matheus, “Knowledge Discovery in Databases : An Overview Knowledge Discovery in Databases”, edited by G.Piatetsky-Shapiro and W.J.Frawley, California, AAAI/MIT Press,1991, pp.1-30.
[5] F. H. Grupe, , and M. M. Owrang , “DataBase Mining Discovering New Knowledge And Cooperative Advantage”, Information Systems Management, Vol. 12, No.4, pp.26-31, 1995.
[6] H. Curt, “The Devile’s in the Detail: Techniques, Tool, and Applications for Data Mining and Knowledge Discovery-Part 1,” Intelligence Software Strategies, Vol.6, No.9, 1995, p.3.
[7] M. J. A. Berry, and G. Linoff, “Data Mining Techniques : For Marketing Sale and Customer Support”, John Wiley & Sons, Inc.,Canada, 1997.
[8] M. W. Carven, and J. W. Shavlik, “Using neural networks for data mining”, Future Generation System, 13, 221-229, 1997.
[9] D. Pyle, “Data Preparation for Data Mining”, Morgan Kaufmann Pubilshers, 1999 [10] A. Berson, S. Smith, and K. Thearling, Buildig Data Mining Application for CRM, NY : McGraw-Hill Inc., 2000.
[11] P. R. Pracock, “Data Mining in Marking : Part1,” Marketing Management, Vol.6, No.4, 1998, pp.8-18.
[12] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm for Mining Association Rules in Large Database”, Proc. Of 21st VLDB,pp.432-444, 1995 [13] C. Ming-Syan, H. Jiawei, and S.Yu Philip, “Data mining :An Overview from a Database Perspective”, IEEE Transactions on Knowledge and Data Enginerring, 1996, Vol.8-No.6.
[14] H. Toivonen, “Sampling Large Database for Association Rules”, Proc. Of 23st VLDB,pp.134-145, 1996.
[15] J.Hipp, A. Myka, R. Wirth, and U. Guntzer, “A New Algorithm for Faster Mining of Generalized Association Rules”, Technischer Bericht des Wilhelm-Schickard-Instituts, WSI-98-4, 1998.
[16] M.J.Zaki, ”Scalable Algorithms for Association Mining”, IEEE Trans. On Knowledge and Data Engineering, 2000, pp.372-390.
[17] M.J.Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ”New Algorithms for Fast Discovery of Associatiion Rules”, American Association for Artificial Intelligence, 1997.
[18] M.J.Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ”New Algorithms for Fast Discovery of Associatiion Rules”, The 3nd Int’l. Conf. On Knowledge Discovery & Data Mining(KDD), 1997
[19] R Agrawal, T. Imilienski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” In Proc. Of the ACM SIGMOD Int’l Conf. on Management of Data,PP.207-216, May 1993.
[20] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining Association Rules”, Proc. Of the 20th VLDB Conference Santiago, 1994.
[21] R.Srilant, and R. Agrawal, “Mining Generalized Associatin Rules”, Proc. Of the 21st Int’l Conference on VLDB, 1995, pp.407-419.
[22] H.Mannila, and P.Ronkainen, “Similarity of Event Sequences”, Procedings of theFourth International Workshop on Temporal Representation and Reasoning (TIME’97),1997, pp.136-139.
[23] J.Han and J.pei, and Y.Yin, “Mining Frequent Patterns without Candidate Generation”, Proc. of 2000 ACM Int. Conf. On Management of Data, 2000, pp.1-12.
[24] R.Agrawal, and R.Srikant, “Mining Sequential Patterns”, Proc. of the Int’l Conference on Data Engineering(ICDE), 1995.
[25] R.J. Bayardo, “Efficiently Mining Long Patterns from Databases”, Proc. of ACM SIGOD Conf. On Management of Data, 1998, pp.85-93.
[26] K.Alsabti, S.Ranka, and V.Singh, “An Efficient K-Means Clustering Algorithm”, PPS/SPDP Workshop on High performance Data Mining, 1997.
[27] R.Ng, and J.Han,”Efficient and Effective Clustering Method for Spatial Data Mining”, Proc. Int’l Conf. Very Large Data Bases, 1994, pp.144-155.
[28] J.R.Quilan, “C4.5 : Programs for Machine Learning”, Morgan Kaufmann, 1993.
[29] J.R.Quilan, “Induction of decision trees”, Machine Learning, 1986, pp.81-106.
[ 30] L.Breiman, J.Friedman, R.Olshen, and C.Stone, “Classification of Regression Trees”, Wadsworth, 1984.〔34〕L.Kaufman, and P.J. Rousseeuw, “Finding Groups in Data : An Introduction to Cluster Analysis”, 1990.
[31] S.M.Weiss and, C.A.Kulikowski, “Computer System that Learn : Classification and Predicition Methods form Statistics, Neural Net, Machine Learning, and Expert.
[32] 謝邦昌(2001),資料採礦入門及應用-從統計技術看資料採礦,資商訊息顧問公司。
[33] UniMiner Data Mining: http://www.uniminer.com/center01.htm.
[34] J. Han and M. Kamber, “Data Mining : Concepts and Techniques,” Morgan Kaufmann Publishers,2000.
[35] 江俊彥,「應用分群法提升關聯法則效率之研究」,國立屏東科技大學,碩士論文,民國九十年。[ 36] 曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,資料探勘Data Mining,出版,臺北市,旗標出版股份有限公司,民國九十七年。
[37] NCR - Transforming Transactions into Relationships: http://www.ncr.com/ repository /case_studies/store_automation/sa_walmart7875scanner.htm.
[38] S. Brin, R. Motwani, and C. Silverstein, "Beyond Market Baskets: Generalizing Association Rules to Correlations," 1997 ACM SIGMOD Conference on Management of Data, pp. 265-276, 1997.
System”, Morgan Kaufman, 1991.
[39] 郭泯旬,「關聯規則最小支持度之研究--以零售業為例」,元智大學工業工程與管理學系,碩士論文,2000[40] 陳仕昇,「以可重複序列挖掘網路瀏覽規則之研究」,國立中央大學資訊管理學系,碩士論文,1998[41] 李姿儀,『醫院門診資料探勘— 以虎尾若瑟醫院為例』,南華大學資訊管理研究所碩士論文,民國八十九年。[42] T.P.Hong ; C.S. Kuo and S.C. Chi, “Mining association rules from quantitative data,” Intelligent Data Analysis Volume: 3, Issue: 5, November. 1999, Page(s): 363-376.
[43] M.S. Chen, J. Han, and P.S. Yu, "Data Mining: An Overview from a Database Perspective," IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, 1996.
[44] 國家資通安全會報技術服務中心,http://www.dgbas.gov.tw/pubilc/Data/81211642071.pdf.
[45] 孫惠明(2007),資料挖掘理論與實務規劃利用,松崗圖書出版股份有限公司。
[46]Y. Lu; Q. Yuan, “Research on weather forecast based on neural network,” Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, Volume: 2, 2000, Page(s): 1069-1072 vol.2
[ 47 ] 廖秀珊,「運用語意變數探勘階層概念之模糊關聯規則」,元智大學,碩士論文,民國九十八年。[48] Takeaki Uno, Taisuya Asai, Yuzo Uchida, Hiroki Arimura “LCM: AN Efficient Algorithm for Enumerating Frequent Closed Item Sets”, In Proc. IEEE ICDM99 Workshop FIMI’03, 2003.