1. Prajitha, N., S.S. Athira, and P.V. Mohanan, Bio-interactions and risks of engineered nanoparticles. Environmental Research, 2019. 172: p. 98-108.
2. Bai, W., et al., Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 2010. 12: p. 1645-1654.
3. Ma, J., et al., From the lung to the knee joint: Toxicity evaluation of carbon black nanoparticles on macrophages and chondrocytes. Journal of Hazardous Materials, 2018. 353: p. 329-339.
4. Hojamberdiev, M., et al., Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water. Applied Catalysis B: Environmental, 2012. 115-116: p. 303-313.
5. Dong, P., et al., WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environmental Science: Nano, 2017. 4: p. 539-557.
6. Nagy, D.a.e., et al., Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. The Royal Society of Chemistry, 2016. 6: p. 33743-33754.
7. Kotagiri, N., et al., Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radianceresponsive nanophotosensitizers. nature nanotechnology, 2015. 10: p. 370-379.
8. Shehada, N., et al., Ultrasensitive Silicon Nanowire for Real-World Gas Sensing: Noninvasive Diagnosis of Cancer from Breath Volatolome. Nano Letters, 2015. 15(1288-1295).
9. Chen, X., et al., A cell nanoinjector based on carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104: p. 8218-8222.
10. Cabral, H., et al., Systemic Targeting of Lymph Node Metastasis through the Blood Vascular System by Using Size-Controlled Nanocarriers. ACS NANO, 2015. 9: p. 4957-4967.
11. Herle, P.S., B. Ellis, and N.C.L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. nature materials, 2004. 3: p. 147-152.
12. Li, B., et al., Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution. nature communications, 2014.
13. Siqueira, J.R. and O.N. Oliveira, 9 - Carbon-Based Nanomaterials, in Nanostructures, A.L. Da Róz, et al., Editors. 2017, William Andrew Publishing. p. 233-249.
14. Yadav, B.C. and R. Kumar, Structure, properties and applications of fullerenes. International Journal of Nanotechnology and Applications, 2008. 2(1): p. 15-24.
15. Maiti, D., et al., Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. 2019. 9(1401).
16. Tîlmaciu, C.-M. and M.C. Morris, Carbon nanotube biosensors. 2015. 3(59).
17. Foo, M.E. and S.C.B. Gopinath, Feasibility of graphene in biomedical applications. Biomedicine & Pharmacotherapy, 2017. 94: p. 354-361.
18. Tourinho, P.S., et al., Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry, 2012. 31(8): p. 1679-1692.
19. Reshma, V.G. and P.V. Mohanan, Quantum dots: Applications and safety consequences. Journal of Luminescence, 2019. 205: p. 287-298.
20. Kalhapure, R.S., et al., Dendrimers – from organic synthesis to pharmaceutical applications: an update. Pharmaceutical Development and Technology, 2013. 20(1): p. 22-40.
21. Jászberényi, Z., et al., Physicochemical and MRI characterization of Gd3+-loaded polyamidoamine and hyperbranched dendrimers. JBIC Journal of Biological Inorganic Chemistry, 2007. 12(3): p. 406-420.
22. Lates, V., et al., Electrochemical behavior of a new s-triazine-based dendrimer. Journal of Applied Electrochemistry, 2007. 37(5): p. 631-636.
23. Weber, N., et al., Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. Journal of Controlled Release, 2008. 132(1): p. 55-64.
24. Mousavi, S., et al., Nanofiber immobilized CeO2/dendrimer nanoparticles: An efficient photocatalyst in the visible and the UV. Applied Surface Science, 2019. 479: p. 608-618.
25. Vunain, E., A.K. Mishra, and B.B. Mamba, Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. International Journal of Biological Macromolecules, 2016. 86: p. 570-586.
26. Ambade, A.V., E.N. Savariar, and S. Thayumanavan, Dendrimeric Micelles for Controlled Drug Release and Targeted Delivery. Molecular Pharmaceutics, 2005. 2(4): p. 264-272.
27. N.Tiwari, J., R. N.Tiwari, and K. S.Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012. 57: p. 724-803.
28. Smita, S., et al., Nanoparticles in the environment: assessment using the causal diagram approach. Environmental Health, 2012. 11: p. 1-11.
29. Iavicoli, I., et al., Opportunities and challenges of nanotechnology in the green economy. Environmental Health, 2014: p. 1-11.
30. Bermudez, E., et al., Pulmonary Responses of Mice, Rats, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles. Toxicological Sciences, 2004. 77: p. 347-357.
31. Oberdörster, G., E. Oberdörster, and J. Oberdörster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives, 2005. 113: p. 823-839.
32. Sharma, C.S., et al., Single-Walled Carbon Nanotubes Induces Oxidative Stress in Rat Lung Epithelial Cells. Journal of Nanoscience and Nanotechnology, 2007. 7: p. 2466-2472.
33. M.Sayes, C., et al., Nano-C60 cytotoxicity is due to lipid peroxidation. BiomaterialsNano-C60 cytotoxicity is due to lipid peroxidation, 2005. 26: p. 7587-7595.
34. Tinkle, S.S., et al., Skin as a route of exposure and sensitization in chronic beryllium disease. Environmental Health Perspectives, 2013. 111: p. 1202-1208.
35. 周政泰,2018,“噴漆懸浮微粒對人體肺支氣管上皮細胞BEAS-2B之細胞毒性與COPD相關性之研究”, 國立虎尾科技大學生物科技系研究所碩士論文.36. S.Patil, S., et al., Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 2016. 5: p. 10-21.
37. Qamar, M., M.A. Gondal, and Z.H. Yamani, Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water. Catalysis Communications, 2009. 10(15): p. 1980-1984.
38. SUN Zhelin , C.C., YANG Lingyan ,ZOU Qiang ,SUO Guangli ,HUANG Junyi ,LIN Jiahua., Impact of organic and water⁃soluble PM2.5 on BEAS⁃2B cell damage and expression of COPD biomarkers. Acta Scientiae Circumstantiae, 2016. 36: p. 4262-4271.
39. R.C.J Langen, S.H.K., E.F.M Wouters., ROS in the local and systemic pathogenesis of COPD. Free Radical Biology and Medicine, 2003. 35: p. 226-235.
40. A.J.Reis, C.A., S. Furtado, J. Ferreira, M. Drummond, C. Robalo-Cordeirog., COPD exacerbations: management and hospital discharge. Pulmonology, 2018. 24: p. 345-350.
41. Di Meo, S., et al., Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative medicine and cellular longevity, 2016. 2016: p. 1245049-1245049.
42. Wang, J. and W. Dong, Oxidative stress and bronchopulmonary dysplasia. Gene, 2018. 678: p. 177-183.
43. 基因叔叔:科普、期刊導讀,2017,萬惡的根源--活性氧物質 (ROS)?。
44. 王淑卿,2014,自由基與活性氧化物。
45. Chen, L., et al., Synthesis of WO3$H2O nanoparticles by pulsed plasma in liquid. The Royal Society of Chemistry, 2014. 4: p. 28673–28677.
46. Meerloo, J.v., G.J.L. Kaspers, and J. Cloos, Cell Sensitivity Assays: The MTT Assay. Cancer Cell Culture, 2011. 731: p. 237-245.
47. Parhamifar, L., H. Andersen, and S.M. Moghimi, Lactate Dehydrogenase Assay for Assessment of Polycation Cytotoxicity Nanotechnology for Nucleic Acid Delivery, 2012. 948: p. 13-22.
48. Aydin, S., A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 2015. 72: p. 4-15.
49. Vallar, S., et al., Oxide slurries stability and powders dispersion: optimization with zeta potential and rheological measurements. Journal of the European Ceramic Society, 1999. 19(6): p. 1017-1021.
50. Chen, P., et al., Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicology and Environmental Safety, 2019. 171: p. 337-346.
51. Zamzami, N., et al., Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene, 1998. 16: p. 2265-2282.
52. Eom, H.-J. and J. Choi, p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells. Environmental Science & Technology, 2010. 44(21): p. 8337-8342.
53. Hsin, Y.-H., et al., The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, 2008. 179(3): p. 130-139.
54. Borm, P.J.A., et al., The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology, 2006. 3(1): p. 11.
55. Xia, T., et al., Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Letters, 2006. 6(8): p. 1794-1807.
56. Alcaraz, M.J., P. Fernandez, and M.I. Guillen, Anti-Inflammatory Actions of the Heme Oxygenase-1 Pathway. Current Pharmaceutical Design, 2003. 9: p. 2541-2551.
57. Drummond, G.S., et al., HO-1 overexpression and underexpression: Clinical implications. Archives of Biochemistry and Biophysics, 2019: p. 108073.
58. 朴恩谊、徐立红,2012,8-OHdG 在医学领域的应用与研究进展。
59. Breivik, J., et al., K-ras mutation in colorectal cancer: relations to patient age, sex and tumour location. British Journal of Cancer, 1994. 69(2): p. 367-371.
60. Hussain, S.P. and C.C.J.C.r. Harris, Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. 1998. 58(18): p. 4023-4037.
61. Brown, D.M., et al., Inflammation and gene expression in the rat lung after instillation of silica nanoparticles: Effect of size, dispersion medium and particle surface charge. Toxicology Letters, 2014. 224(1): p. 147-156.
62. Nel, A., et al., Toxic Potential of Materials at the Nanolevel. Science, 2006. 311(5761): p. 622.
63. Heim, J., et al., Genotoxic effects of zinc oxide nanoparticles. Nanoscale, 2015. 7(19): p. 8931-8938.
64. Roszak, J., et al., Effect of particle size and dispersion status on cytotoxicity and genotoxicity of zinc oxide in human bronchial epithelial cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2016. 805: p. 7-18.
65. Sun, Z., et al., Nano zerovalent iron particles induce pulmonary and cardiovascular toxicity in an in vitro human co-culture model. Nanotoxicology, 2016. 10(7): p. 881-890.
66. Yang, L., et al., Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China. Science of The Total Environment, 2017. 574: p. 1649-1658.
67. Connolly, B., et al., SERPINA1 mRNA as a Treatment for Alpha-1 Antitrypsin Deficiency. Journal of Nucleic Acids, 2018.