|
Reference [1]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1994. [2]K. J. Astrom, and T. Hagglund, Automatic tuning of PID controllers, Research Triangle Park, NC: Instrum. Soc. Amer., 1988. [3]B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Aadaptive fuzzy approach,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 32-43, 1996. [4]Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line tuning of fuzzy-neural network for adaptive control of nonlinear dynamical systems,” IEEE Trans. Syst. Man Cybern. B, vol. 27, no. 6, pp. 1034-1043, 1997. [5]W. Y. Wang, M. L. Chan, C. C. J. Hsu, and T. T. Lee, “ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Syst. Man Cybern. B, vol. 32, no. 4, pp. 483-492, 2002. [6]R. J. Wai, Development of new training algorithms for neuro-wavelet systems on the robust control of induction servo motor drive,” IEEE Trans. Ind. Electron. vol. 49, pp. 1323-1341, 2002. [7]C. M. Lin, K. N. Hung, and C. F. Hsu, “Adaptive neuro-wavelet control for switching power supplies,” IEEE Tran. Power Electr. vol. 22, pp.87-95, 2007. [8]G. S. Huang, and H. J. Uang, “Robust adaptive PID tracking control design for uncertain spacecraft systems: A fuzzy approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 4, pp. 1506-1514, 2006. [9]L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-based PID and fuzzy controllers for DC-DC converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp 2237-2248, 2009. [10]L. A. Zadeh, “Fuzzy sets,” Information control, vol. 8, pp. 338-353, 1965. [11]C. T. Lin, and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Englewood Cliffs, NJ: Prentice-Hall, 1996. [12]S. Mu, S. Tian, and C. Yin, “A novel radial basis function neural network classifier with centers set by cooperative clustering,” Inter. J. Fuzzy Syst., vol. 9, no. 4, pp. 205-211, 2007. [13]J. M. Mendel, A Prelude to Neural Networks: Adaptive and Learning Systems, Englewood Cliffs, NJ: Prentice-Hall, 1994. [14]O. Omidvar, and D. L. Elliott, Neural Systems for Control, NY: Academic, 1997. [15]M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear systems,” IEEE Trans. Autom. Contr., vol. 41, no. 3, pp. 447-451, 1996. [16]C. M. Lin, and C. F. Hsu, “Neural-network-based adaptive control for induction servomotor drive system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 115-123, 2002. [17]Y. Tang, F. Sun, and Z. Sun, “Neural network control of flexible-link manipulators using sliding mode,” Neurocomputing, vol. 70, no. 1, pp. 288-295, 2006. [18]S. A. Billings and H. L. Wei, “A new class of wavelet networks for nonlinear system identification,” IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 862-874, 2005. [19]Q. Zhang, “Using wavelet network in nonparametric estimation,” IEEE Trans. Neural Netw., vol. 8, no. 2, pp. 227-236, 1997. [20]C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1175-1183, 2006. [21]C. D. Sousa, E. M. Hemerly, and R. K. H. Galvao, “Adaptive control for mobile robot using wavelet networks,” IEEE Trans. Syst. Man Cybern. B, vol. 32, no. 4, pp. 493-504, 2002. [22]W. K. Ho, C. C. Hang, and J. h. Zhou, “Self-tuning PID control of a plant with under-damped response with specifications on gain and phase margins,” IEEE Trans. Control Syst. Technol., vol. 5, no. 4, pp. 446-452, 1997. [23]T. J. Ren, T. C. Chen, and C. J. Chen, “Motion control for a two-wheeled vehicle using a self-tuning PID controller,” Control Eng. Practice, vol. 16, pp. 365-375, 2008. [24]M. Vagia, and A. Tzes, “Robust PID control design for an electrostatic micromechanical actuator with structured uncertainty,” IET Control Theory and Appl., vol. 2, no. 5, pp. 365-373, 2008. [25]D. L. Yu, T. K. Chang, and D. W. Yu, “Fault tolerant control of multivariable processes using auto-tuning PID controller,” IEEE Trans. Syst. Man. Cybern. B, vol. 35, no. 1, pp. 32-43, 2005. [26]J. G. Juang, M. T. Huang, and W. K. Lin, “PID control using presearched genetic algorithms for a MIMO system,” IEEE Trans. Syst. Man., Cybern. C, vol. 38, no. 5, pp. 716-727, 2008. [27]J. Wang, C. Zhang, and Y. Jing, “Fuzzy immune self-tuning PID control of HVAC system,” IEEE Int. Conf. Mechatronics and Automation, pp. 678-683, 2008. [28]R. Bandyopadhyay, U. K. Chakraborty, and D. Patranabis, “Autotuning a PID controller: A fuzzy-genetic approach,” J. Sys. Architecture, vol. 47, pp. 663-673, 2001. [29]E. Harinath, and G. K. I. Mann, “Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems,” IEEE Trans. Syst. Man. Cybern. B, vol. 38, no. 3, pp. 667-674, 2008. [30]S. D. Wang, and C. K. Lin, “Adaptive tuning of the fuzzy controller for robots,” Fuzzy Sets and Syst., vol. 110, pp. 351-363, 2000. [31]M. Erlic, and W. S. Lu, “A reduced-order adaptive velocity observer for manipulator control,” IEEE Trans. Robotics Automat., vol. 11, no. 2, pp. 293-303, 1995. [32]J. Lu, G. Chen, and D. Cheng, “Bridge the gap between the Lorenz system and the Chen system, ” Int. J. Bifurcat. Chaos , vol. 12, pp. 2917-2926, 2002. [33]C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding-mode control for induction servomotor systems,” IEEE Trans. Energy Conversion, vol. 19, no. 2, pp. 362-368, 2004. [34]D. M. Mitchell, DC/DC Switching Regulator Analysis, NY: Mc-Graw Hill, 1998. [35]Y. F. Liu, and P. C. Sen, “A novel method to achieve zero-voltage regulation in Buck converter,” IEEE Trans. Power Electron., vol. 10, pp. 292-301, 1995. [36]J. R. Timothy, “Fuzzy Logic with Engineering Application,” NY: Mc-Graw Hill, 1995. [37]B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single-input fuzzy logic controller and its properties,” Fuzzy Sets and Syst., vol. 106, pp. 299-308, 1999. [38]C. M. Lin, and C. F. Hsu, “Hybrid fuzzy sliding-mode control of an aeroelastic system,” J. Guidance Contr. Dynamics, vol. 25, pp. 829-832, 2002. [39]C. M. Lin and C. F. Hsu, “Self-learning fuzzy sliding-mode control for antilock braking systems,” IEEE Trans. Contr. Systems Technology, vol. 11, pp. 273-278, 2003. [40]C. F. Hsu, and C. M. Lin, “Fuzzy-identification-based adaptive controller design via backstepping approach,” Fuzzy Sets and Syst., vol. 151, pp. 43-57, 2005. [41]R. J. Wai, “Fuzzy sliding-mode control using adaptive tuning technique,” IEEE Trans. Ind. Electron., vol. 54, pp. 586-594, 2007. [42]J. Alvarez-Ramirez, I. Cervantes, G. Espinosa-Perez, P. Maya, and A. Morales, “A stable design of PI control for DC-DC converters with an RHS zero,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 103-106, 2001. [43]K. S. Leung, and S. H. Chung, “Derivation of a second-order switching surface in the boundary control of buck converters,” IEEE Power Electron. Letter, vol. 2, pp. 63-67, 2004. [44]Y. He, and F. L. Lu, “Sliding-mode control for DC-DC converters with constant switching frequency,” IEE Proc. Contr. Theory Appl., vol. 153, pp. 37-45, 2006. [45]S. C. Tan, Y. M. Lai and C. K. Tse, “General design issues of sliding-mode controllers in DC-DC converters,” IEEE Trans. Ind. Electron., vol. 55, pp. 1160-1174, 2008. [46]F. Luo, and D. Ma, “An integrated switching DC-DC converter with dual-mode pulse-train/PWM control,” IEEE Trans. Circuits Syst. II, vol. 56, pp. 152-156, 2009. [47]D. He, and R. M. Nelms, “Fuzzy logic average current-mode control for DC-DC converters using an inexpensive 8-bit microcontroller,” IEEE Trans. Power Appl., vol. 41, pp. 1531-1538, 2005. [48]K. Viswanathan, R. Oruganti, and D. Srinivasan, “Nonlinear function controller: a simple alternative to fuzzy logic controller for a power electronic converter,” IEEE Trans. Ind. Electron., vol. 52, pp. 1439-1448, 2005. [49]C. F. Hsu, C. M. Lin, and K. H.Cheng, “Supervisory intelligent control system design for forward DC-DC converters,” IEE Proc. Electron. Power Appl., vol. 153, pp. 691-701, 2006. [50]J. J. E. Slotine, and W. P. Li, “Applied Nonlinear Control,” Englewood Cliffs, NJ: Prentice Hall, 1991. [51]H. C. Roth, “Circuit Design with VHDL,” Cambridge, MA: MIT Press, 2004. [52]F. J. Lin, Y. C. Hung, and S. Y. Chen, “FPGA-based computed force control system using elman neural network for linear ultrasonic motor,” IEEE Trans. Ind. Electron., vol. 56, pp. 1238-1253, 2009. [53]http://www.altera.com/ [54]J. H. Park, “On synchronization of unified chaotic systems via nonlinear control,” Chaos Solitons Fractals, vol. 25, pp. 699-704, 2005. [55]J. H. Park, “Chaos synchronization between two different chaotic dynamical systems,” Chaos Solitons Fractals, vol. 27, pp. 549-554, 2006. [56]A. E. Matouk, “Dynamical analysis, feedback control and synchronization of Liu dynamical system,” Nonlinear Analysis TMA, vol. 69, pp. 3213-3224, 2008. [57]Z. M. Ge, and P. C. Tsen, “Chaos synchronization by variable strength linear coupling and Lyapunov function derivative in series form,” Nonlinear Analysis TMA , vol. 69, pp. 4604-4613, 2008. [58]X. Y. Wang, and J. M. Song, “Synchronization of the unified chaotic system, Nonlinear Analysis TMA, vol. 69, pp. 3409-3416, 2008. [59]Z. M. Ge, and S. Y. Li, “Chaos control of new Mathieu-Van der Pol systems with new Mathieu-Duffing systems as functional system by GYC partial region stability theory,” Nonlinear Analysis TMA, vol. 71, pp. 4047-4059, 2009. [60]Z. Wang, “Chaos synchronization of an energy resource system based on linear control,” Nonlinear Analysis RWA, vol. 11, pp. 3336-3343, 2010. [61]F. Q. Wang, and C. X. Lin, “Synchronization of unified chaotic system based on passive control,” Physica D, vol. 225, pp. 55-60, 2007. [62]C. S. Chen, “Quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems,” Expert Syst. Appl., vol. 36, pp. 11827-11835, 2009. [63]M. Chen, and W. H. Chen, “Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems,” Chaos Solitons Fractals, vol. 41, pp. 2716-2724, 2009. [64]C. S. Chen, and H. H. Chen, “Robust adaptive neural-fuzzy-network control for the synchronization of uncertain chaotic systems,” Nonlinear Analysis RWA, vol. 10, pp. 1466-1479, 2009. [65]M. Chen, C. S. Jiang, B. Jiang, and Q. X. Wu, “Sliding mode synchronization controller design with neural network for uncertain chaotic systems,” Chaos Solitons Fractals, vol. 39, pp. 1856-1863, 2009. [66]Y. Q. Che, J. Wang, K. M. Tsang, and W. L. Chan, “Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control,” Nonlinear Analysis RWA, vol. 11, pp. 1096-1104, 2010. [67]J. Liang, Z. Wang, and X. Liu, “State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case,” IEEE Trans. Neural Netw., vol. 20, pp. 781-793, 2009. [68]Y. Liu, Z. Wang, J. Liang, and X. Liu, “Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time-delays,” IEEE Trans. Neural Netw., vol. 20, pp. 1102-1116, 2009. [69]Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays,” IEEE Trans. Neural Netw., vol. 21, pp. 11-25, 2010. [70]Q. Zhang, “Using wavelet network in nonparametric estimation,” IEEE Trans. Neural Netw., vol. 8, pp. 227-236, 1997. [71]D. W. C. Ho, P. A. Zhang, and J. Xu, “Fuzzy wavelet networks for function learning,” IEEE Trans. Fuzzy Syst., vol. 9, pp. 200-211, 2001 [72]C. L. Lin, N. C. Shieh, and P. C. Tung, “Robust wavelet neuro control for linear brushless motors,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, pp. 918-932, 2002. [73]C. F. Hsu, K. H. Cheng, T. T. Lee, “Robust wavelet-based adaptive neural controller design with a fuzzy compensator,” Neurocomputing, vol. 73, pp. 423-431, 2009. [74]J. Cao, Z. Lin, and G. B. Huang, “Composite function wavelet neural networks with extreme learning machine,” Neurocomputing, vol. 73, pp. 1405-1416, 2010. [75]J. H. Park, S. J. Seo, and G. T. Park, “Robust adaptive fuzzy controller for nonlinear system using estimation of bounds for approximation errors,” Fuzzy Sets Syst., vol. 133, pp. 19-36, 2003. [76]M. Feki, “An adaptive feedback control of linearizable chaotic systems,” Chaos Solitons Fractals, vol. 15, pp. 883-890, 2003. [77]H. T. Yau, and C. S. Shieh, “Chaos synchronization using fuzzy logic controller,” Nonlinear Analysis RWA, vol. 9, pp. 1800-1810, 2008. [78]J. Huang, “Chaos synchronization between two novel different hyperchaotic systems with unknown parameter, Nonlinear Analysis TMA, vol. 69, pp. 4174-4181, 2008. [79]S. Mu, S. Tian, and C. Yin, “A novel radial basis function neural network classifier with centers set by cooperative clustering,” Int. J. Fuzzy Syst., vol. 9, no. 4, pp. 205-211, 2007. [80]Y. Li, S. Qiang, X. Zhuang, and O. Kaynak, “Robust and adaptive backstepping control for nonlinear systems using RBF neural networks,” IEEE Trans. Neural Networks, vol. 15, no. 3, pp. 693-701, 2004. [81]S. Kumarawadu and T. T. Lee, “Neuroadaptive combined lateral and longitudinal control of highway vehicles using RBF networks,” IEEE Trans. Intel. Transportation Systems, vol. 7, no. 4, pp. 500-512, 2006. [82]T. Zhao, “RBFN-based decentralized adaptive control of a class of large-scale non-affine nonlinear systems,” Neural Computing and Applications, vol. 17, no. 4, pp. 357-364, 2008. [83]S. Wang, and D. L. Yu, “Adaptive RBF network for parameter estimation and stable air-fuel ratio control,” Neural Networks, vol. 21, no. 1, pp. 102-112, 2008. [84]G. B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation,” IEEE Trans. Neural Networks, vol. 16, no. 1, pp. 57-67, 2005. [85]C. F. Hsu, “Adaptive growing-and-pruning neural network control for a linear piezoelectric ceramic motor,” Engineering Applications of Artificial Intell., vol. 21, no. 8, pp. 1153-1163, 2008. [86]M. J. Er, F. Liu, and M. B. Li, “Channel equalization using dynamic fuzzy neural networks,” Int. J. Fuzzy Syst., vol. 11, no. 1, pp. 10-19, 2009. [87]J. I. Park, J. H. Cho, M. G. Chun, and C. K. Song, “Neuro-fuzzy rule generation for backing up navigation of car-like mobile robots,” Int. J. Fuzzy Syst., vol. 11, no. 3, pp. 192-201, 2009. [88]C. M. Lin and C. F. Hsu, “Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings,” IEEE Trans. Fuzzy Syst., vol. 12, no. 5, pp. 733-742, 2004. [89]C. M. Lin, L. Y. Chen and C. H. Chen, “RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology,” IEEE Trans. Neural Networks, vol. 18, no. 3, pp. 708-720, 2007. [90]Y. F. Peng and C. M. Lin, “Intelligent motion control of linear ultrasonic motor with tracking performance,” IET Contr. Theory Appl., vol. 1, no. 1, pp. 9-17, 2007. [91]C. M. Lin and C. F. Hsu, “Neural network hybrid control for antilock braking systems,” IEEE Trans. Neural Networks, vol. 14, no. 2, pp. 351-359, 2003. [92]C. F. Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems,” IEEE Trans. Neural Networks, vol. 18, no. 4, pp. 1232-1241, 2007. [93]P. Z. Lin and T. T. Lee, “Robust self-organizing fuzzy-neural control using asymmetric Gaussian membership functions,” Int. J. Fuzzy Syst., vol. 9, no. 2, pp. 77-86, 2007. [94]C. M. Lin, Y. F. Peng, and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown nonlinear systems,” IEEE Trans. Circuits Syst. II, vol. 51, no. 7, pp. 354-358, 2004. [95]C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Trans. Syst. Man Cybern. B, vol. 34, no. 2, pp. 1248-1260, 2004. [96]K. Nouri, R. Dhaouadi, and N. B. Braiek, “Adaptive control of a nonlinear dc motor drive using recurrent neural networks,” Applied Soft Computing, vol. 8, no. 1, pp. 371-382, 2008. [97]R. Shahnazi, H. M. Shanechi, and N. Pariz, “Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control,” IEEE Trans. Energy Conversion, vol. 23, no. 1, pp. 138-147, 2008. [98]C. M. Lin and C. F. Hsu, “Recurrent neural network adaptive control of wing rock motion,” J. Guidance Contr. Dynamics, vol. 25, no. 6, pp. 1163-1165, 2002.
|