[1]N. N. Liu, and Z. H. Li, “Bimetal-organic frameworks derived carbon doped ZnO/Co3O4 heterojunction as visible-light stabilized photocatalysts,” Materials Science in Semiconductor Processing, vol. 79, pp. 24-31, 2018.
[2]K. Ueda, H. Tabata and T. Kawai, “Magnetic and electric properties of transition-metal-doped ZnO films” Applied Physics Letters, vol. 7, pp. 988-990, 2010.
[3]M. Ahmad, C. Pan and J. Zhu, “Electrochemical determination of l-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode,” Journal of Materials Chemistry, vol. 20, pp. 7169, 2010.
[4]M. Ahmad, C. Pan, J. Iqbal, L. Gan and J. Zhu, “Bulk synthesis route of the oriented arrays of tip-shape ZnO nanowires and an investigation of their sensing capabilities,” Chemical Physics Letters, vol. 480, pp. 105-109, 2009.
[5]E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” Journal of Physical Chemistry B, vol. 29, pp. 5566-5572, 1998.
[6]F. Huang, J. Hou, Q. Zhang, Y. Wang, R. C. Massé, S. Peng, et al., "Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer," Nano Energy, vol. 26, pp. 114-122, 2016.
[7]Y. Feng, L. Liu, S. Hu, Y. Ren, Y. Liu, J. Xiu, et al., "Four-photon-excited fluorescence resonance energy transfer in an aqueous system from ZnSe:Mn/ZnS quantum dots to hypocrellin A," Opt Express, vol. 24, pp. 19627-37, Aug 22 2016.
[8]Y. Zhang, Z. Cui, Y. Ding, and T. Liu, "Density functional theories study on optoelectronic properties of arsenic-doped GaN nanowires," Optical and Quantum Electronics, vol. 48, 2016.
[9]Z. R. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez,H. Konishi and H. F. Xu, “Complex and oriented ZnO nanostructures,” Nature Materials, vol. 12, pp. 821-826, 2003.
[10]P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker and M. Gratzel, “Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals,” Journal of Physical Chemistry B, vol. 51, pp. 14336-14341,2006.
[11]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally and P. D. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angewandte Chemie-international Edition, vol. 42, pp. 3031-3034, 2003.
[12]R. S. Devan, R. A. Patil, J. H. Lin and Y. R. Ma, “One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications,” Advanced Functional Materials, vol. 22, pp.3326-3370, Aug 21 2012.
[13]D. Girbovan, M. A. Bodea, D. Marconi, J. D. Pedarnig and A. Pop, “Structure, morphology and optical properties of Al - doped ZnO thin films,” Studia Universitatis Babes-bolyai Chemia, vol. 56, pp. 213-220, 2011.
[14]W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters,” Solar Energy Materials And Solar Cells, vol. 65, pp. 37-45, JAN 2001.
[15]C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01(1)over-bar2) sapphire by metalorganic chemical vapor deposition,” Journal Of Applied Physics, vol. 85, pp. 2595-2602, 1999.
[16]T. V. Torchynska, I. C. B. Rodriguez, B. El Filali, G. Polupan and A. I. D. Cano, “Luminescence, structure and aging c-axis - Oriented silver doped ZnO nanocrystalline films,” Materials Science in Semiconductor Processing, vol. 79, pp. 99-106, JUN 2018.
[17]S. Khadtare, A. S. Bansode, V. L. Mathe, N. K. Shrestha, C. Bathula, S. H. Han and H. M. Pathan, “Effect of oxygen plasma treatment on performance of ZnO based dye sensitized solar cells,” Journal of Alloys and Compounds, vol. 724, pp. 348-352, NOV 2017.
[18]S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation,” Journal of Physical Chemistry B, vol. 109, pp. 2526-2531, 2005.
[19]C. W. N. Seung Yong Bae, Ja Hee Kang, and Jeunghee Park, “Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation,” Journal of Physical Chemistry B, vol. 109, pp. 2526-2531, 2005.
[20]H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films,” published by Institute of Physics Publication, p.17, 1995.
[21]M. Blencowe, “Quantum electromechanical systems,” Physics Reports-Review Section of Physics Letters, vol. 395, pp. 159-222, 2004.
[22]B. Baruwati, D. K. Kumar and S. V. Manorama, “Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH,” Sensors and Actuators B-Chemical, vol. 119, pp. 676-682, 2006.
[23]S. Iijima, and T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-Nm Diameter,” Nature, vol. 363, pp. 603-605, 1993.
[24]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al., "Room-Temperature Ultraviolet Nanowire Nanolasers," SCIENCE, vol. 292, pp. 1897-1899, 2001.
[25]B. P. Zhang, L. Manh, K. Wakatsuki, K. Tamura, T. Ohnishi, M. Lippma, N. Usami, M. Kawasaki, H. Koinuma and Y. Segawa, “In-plane orientation and polarity of ZnO epitaxial films on As-polished sapphire (alpha-Al2O3) (0001) substrates grown by metal organic chemical vapor deposition,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 42, pp. 264-266, MAR 2003.
[26]J. Y. Pan, C. C. Zhu and Y. L. Gao, “Enhanced field emission characteristics of zinc oxide mixed carbon nanotubes films,” Applied Surface Science, vol. 254, pp. 3787-3792, 2008.
[27]R. Bhardwaj, P. Sharma, R. Singh, M. Gupta and S. Mukherjee, “High Responsivity MgxZn1-xO Based Ultraviolet Photodetector Fabricated by Dual Ion Beam Sputtering,” IEEE Sensors Journal, vol. 18, pp. 2744-2750, APR 2018.
[28]G. M. Zhang, Q. F. Zhang, Y. Pei and L. A. Chen, “Field emission from nonaligned zinc oxide nanowires,” VACUUM, vol. 77, pp. 53-56, DEC 2004.
[29]J. Jiao, L. F. Dong, S. Foxley, C. L. Mosher and D. W. Tuggle, “Selected-area growth of carbon nanotubes by the combination of focused ion beam and chemical vapor deposition techniques,” Microscopy and Microanalysis, vol. 9, pp. 516-521, DEC 2003.
[30]G. C. Deng, A. L. Ding, W. X. Cheng, X. S. Zheng and P. S. Qiu, “Two-dimensional zinc oxide nanostructure,” Solid State Communications, vol. 134, pp. 283-286, 2005.
[31]J. Wang, X. Wei, and P. Wangyang, “Gas-Sensing Devices Based on Zn-Doped NiO Two-Dimensional Grainy Films with Fast Response and Recovery for Ammonia Molecule Detection,” Nanoscale Res Letters, vol. 10, p. 461, Dec 2015.
[32]S. Jung and T. Ji, “ZnO Nanorod-Based Humidity Sensors with Fast Response,” IEEE Electron Device Letters, vol. 35, pp. 960-962, 2014.
[33]J. Luo, A. Quan, C. Fu, and H. Li, “Shear-horizontal surface acoustic wave characteristics of a (110) ZnO/SiO2/Si multilayer structure,” Journal of Alloys and Compounds, vol. 693, pp. 558-564, 2017.
[34]E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Materials Chemistry and Physics, vol. 80, pp. 257-263, 2003.
[35]K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties,” Journal of Physics D-Applied Physics, vol. 33, pp. 19-32, FEB 2000.
[36]L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren and J. H. Guo, “One-dimensional quantum-confinement effect in alpha-Fe2O3 ultrafine nanorod arrays,” Nced Materials, vol. 17, pp. 2320, OCT 2005.
[37]Y. Liu, J. Dong, P. J. Hesketh, and M. L. Liu, “Synthesis and gas sensing properties of ZnO single crystal flakes,” Journal of Materials Chemistry, vol. 15, pp. 2316-2320, 2005.
[38]J. P. Cheng, X. B. Zhang, H. Tu, X. Y. Tao, Y. Ye, F. Liu,” Catalytic chemical vapor deposition synthesis of helical carbon nanotubes an triple helices carbon nanostructure, “ Materials Chemistry And Physics, vol.95, pp. 12-15, 2006.
[39]B. D. Yao, Y. F. Chan and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Applied Physics Letters, vol. 81, pp. 757-759, JUL 2002.
[40]B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures,” Chemistry of Materials, vol. 9, pp. 2544-2550, 1997.
[41]Y. Ding, P. X. Gao, and Z. L. Wang, “Catalyst-Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts: A Case of Sn/ZnO,” Journal of The American Chemical Society, vol. 126, pp. 2066-2072, 2004.
[42]Y. R. G. Singh, S. Kataria and H. C. Barshilia, “Different Morphologies of Zinc Oxide Nanostructures Grown Under Similar Deposition Conditions During Vapor-Liquid-Solid Growth,” Nanoscience and Nanotechnology Letters, vol. 5, pp. 1224-1230, DEC 2013.
[43]Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chemistry of Materials, vol. 17, pp. 1001-1006, MAR 2005.
[44]N. Shojaee, T. Ebadzadeh and A. Aghaei, “Effect of concentration and heating conditions on microwave-assisted hydrothermal synthesis of ZnO nanorods,” Materials Characterization, vol. 61, pp. 1418-1423, DEC 2010.
[45]H. Zhang, D. Yang, Y. J. Ji, X. Y. Ma, J. Xu and D. L. Que, “Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” Journal of Physical Chemistry B, vol. 108, pp. 3955-3958, APR 2004.
[46]W. WAGNER, “International equations for the pressure along the melting and along the sublimation curve of ordinary water substance,” Journal of Physical and Chemical Reference Data, vol. 23, pp. 515-525, MAY 1994.
[47]K. Lee, M. Shur, T. A. Fjeldly and T. Ytterdal, “Semiconductor Device Modeling for VLSI,” Prentice –Hall International Editions, 1993.
[48]S. M. Sze, D. J. Coleman and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid State Electronics, vol.14, pp. 1209-1218, 1971.
[49]T. Horiuchi, H. Miura, S. Uchida, “Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules”, Angewandte Chemie-International Edition, vol. 126, pp. 3036-3037, 2003.
[50]K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, “Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity”, Langmuir, vol. 20, pp. 2900-2907, 2004.
[51]S. J. Hwang, C. Petucci, and D. Raftery, “In Situ Solid-State NMR Observations of Photocatalytic Surface Chemistry: Degradation of Trichloroethylene”, Journal of The American Chemical Society, vol. 119, pp. 7877-7878, 1997.
[52]翁敏航等編著,“太陽能電池:原理、元件、材料、製程與檢測技術”,東華書局出版,2010。
[53]陳昇卲,“含微孔性陶瓷膜於染料敏化太陽能電池性能之研究”,長庚大學化工與材料工程學系碩士論文,2010。[54]林明獻,“太陽能電池技術入門”, 第二章,2007。
[55]F. Kristofer, “Studies of Charge Transport Processes in Dye-Sensitized Solar Cells”, School of Chemical Science and Engineering, P. 54, 2007.
[56]M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, vol. 44, pp. 6841-6851, 2005.
[57]V. Thavasi V, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Materials Science and Engineering R, vol. 63, pp. 81-99, 2009.
[58]Oliva Brittany L., Barron Andrew R., “An Introduction to Solar Cell Technology” , 2008.
[59]L. O. Brittany, R. B. Andrew, “An Introduction to Solar Cell Technology”, 2008.
[60]陳昇卲,”含微孔性陶瓷膜於染料敏化太陽能電池性能之研究”,長庚大學化工與材料工程學系碩士論文,2010。
[61]鄭傑中,”二氧化鈦奈米管陣列的製備與分析極染料敏化太陽能電池的應用 “,國立台北科技大學有機高分子研究所碩士學位論文,2009。[62]A. Bera and D. Basak, “Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires”, Applied Physics Letters, vol. 5, pp. 93, 2008.
[63]Y. B. Li, F. D. Valle, M. Simonnet, I. Yamada, J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires”, Applied Physics Letters, vol. 94, 2009.