|
[1]洪胤庭, 2013 “純鈦及鈦合金特性及製程介紹” 中工高雄會刊 第21卷 第1 期. 取自 http://www.cie.org.tw/khc/magaz2101/1-純鈦及鈦合金特性及製程介紹.pdf [2]Cryogenic Materials Group, Materials, 2005, “Notch effects on high-cycle fatigue properties of Ti–6Al–4V ELI alloyat cryogenic temperatures”, Cryogenics 46 pp 30–36. Retrieved from https://doi.org/10.1016/j.cryogenics.2005.10.011 [3]Hiroaki Takadama, 2001, “An X-rayphotoelectron spectroscopy study of the processof apatite formation on bioactive titanium metal”, J Biomed Mater Res. 55(2) pp 85-93. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11255170 [4]Ang Gao and Ruiqiang Hang, 2017, ”Electrochemical surface engineering of titanium-based alloys for biomedical application”, Electrochimica Acta, pp 699-718.Retrieved from https://www.sciencedirect.com/science/article/pii/S0013468618307060 [5]Guolong Wu and Ye Wang, 2018, ”Influence of the Ti alloy substrate on the anodic oxidation in an environmentally-friendly electrolyte”, Surface & Coatings Technology pp 680-688.Retrieved from https://www.sciencedirect.com/science/article/pii/S025789721830358X [6]吳瓊賢, 2013, “鈦金屬板於屋面工程的應用”, 中工高雄會刊 第21卷 第1期 取自 http://www.cie.org.tw/khc/magaz2101/7-鈦金屬板於屋面工程的應用.pdf [7]Leahy J, “Global Market Forecast 2013-2032”, Retrieved from https://zh.scribd.com/document/170532239/Airbus-Global-Market-Forecast-2013-2032-Slides [8]European Commission, 2001, “European Aeronautics: A vision for 2020, Luxembourg: European Communities” . Retrieved from http://www.acare4europe.org/sites/acare4europe.org/files/document/Vision%202020_0.pdf [9]European Commission, 2011,”Flightpath 2050, Luxembourg: EU, 2011”,Retrieved from https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf [10]William D. Brewer , “Titanium alloys and processing for high speed aircraft”, Materials Science and Engineering pp 299–304Retrieved from https://doi.org/10.1016/S0921-5093(97)00818-6 [11]Paramjit Singh, 2017, “On the characteristics of titanium alloys for the aircraft applications”, Materials Today: Proceedings 4 8971–8982, Retrieved from https://doi.org/10.1016/j.matpr.2017.07.249 [12]黃世偉, 2010, “高分子材料與醫療器材”, 科學發展 2010年11月,455期.取自 https://203.145.193.110/NSC_INDEX/Journal/EJ0001/9911/9911-02.pdf [13]蘇建榮2002 , 針對不同表面處理之鈦合金骨螺絲作生物親合性的評估, 國 立成功大學碩士論文 [14]M.F. Davis, S.A. Iverson, P. Baron, A. Vasse, E.K. Silbergeld, E. Lautenbach, D.O. Morris, “Household transmission of methicillin-resistant Staphylococcus aureus and other staphylococci” Lancet Infect. Dis. 703–716. Retrieved from https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(12)70156-1/fulltext [15]R.R.W. Brady, J. Verran, N.N. Damani, A.P. Gibb, 2009, “ Review of mobile communication devices as potential reservoirs of nosocomial pathogens”, J. Hosp. Infect. 71 295–300, Retrieved from https://doi.org/10.1016/j.jhin.2008.12.009 [16]M. Kousta, M. Mataragas, P. Skandamis, E.H. Drosinos, 2010, Prevalence and sources of cheese contamination with pathogens at farm and processing levels, Food Control 21 805–815. Retrieved from https://doi.org/10.1016/j.jhin.2008.12.009 [17]A.F. Engelsman, H.C. van der Mei, R.J. Ploeg, H.J. Busscher, 2017, “The phenomenon of infection with abdominal wall reconstruction”, Biomaterials 28 pp 2314–2327. Retrieved from https://doi.org/10.1016/j.biomaterials.2007.01.028 [18]P. Eggimann, H. Sax, D. Pittet,” Catheter-related infections”, Microbes and Infection Volume 6, Issue 11, pp 1033-1042. Retrieved from https://doi.org/10.1016/j.micinf.2004.05.018 [19]L.G. Harris, R.G. Richards, “Staphylococci and implant surfaces: a review”, Injury, Volume 37, Issue 2, Pages S3-S14. Retrieved from https://doi.org/10.1016/j.injury.2006.04.003 [20]R. Van Houdt. et al ,2012, “Microbial contamination monitoring and control during human space missions”, Planet and Space Sci. 60 ,115–120. Retrieved from https://doi.org/10.1016/j.pss.2011.09.001 [21]C. Balagna.et al,2013 , Silver nanocluster/silica composite coatings obtained by sputtering for antibacterial applications, Engineering Materials, Springer-Verlag Berlin Heidelberg pp. 225–247. Retrieved from http://iopscience.iop.org/article/10.1088/1757-899X/40/1/012037
[22] S. Ferraris , “Antibacterial titanium surfaces for medical implants”, Materials Science and Engineering C, Volume 61, pp 965-978 . Retrieved from https://doi.org/10.1016/j.msec.2015.12.062 [23] D. Lindsay, A. von Holy, J. Hosp, 2006, “Bacterial biofilms within the clinical setting: what healthcare professionals should know”, Infect. 64 ,313–325, Retrieved from https://doi.org/10.1016/j.jhin.2006.06.028 [24] C.R. Arciola, et al, 2012, “Biofilm formation in Staphylococcus implant infections. A review of molecular machanisms and implications for biofilm-resistant materials”, Biomaterials 33 5967–5982. Retrieved from https://doi.org/10.1016/j.biomaterials.2012.05.031 [25] P. Watnick, R. Kolter, 2000, “Biofilm city of microbes”, J. Bacteriol. 182 pp.2675– 2679, Retrieved from http://jb.asm.org/content/182/10/2675 [26] H.Y. An, R.J. Friedman, 1998,”Concise review of mechanisms of bacterial adhesion to biomaterial surfaces”, J. Biomed. Mater. Res. B 43 pp.338–348. Retrieved from https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B [27] L.S.Reddy Yadav. et al ,2017 , “Investigation of Hydrogen generation and Antibacterial activity by Ionic liquid aided synthesis of TiO2 nanoparticles”, Journal of Science: Advanced Materials and Devices Volume 3, Issue 2, pp. 181-187 Retrieved from https://doi.org/10.1016/j.jsamd.2018.03.002 [28] Krzysztof Aniołek, Adrian Barylski, Marian Kupka, 2018,”Modelling the structure and mechanical properties of oxide layers obtained on biomedical Ti-6Al-7Nb alloy in the thermal oxidation process”, Vacuum, Volume 154, August 2018, pp. 309-314 . Retrieved from https://doi.org/10.1016/j.vacuum.2018.05.028 [29] M. Buciumeanu and A. Bagheri, 2018,”Tribocorrosion behavior of additive manufactured Ti-6Al-4V biomedical alloy”, Tribology International Volume 119, pp. 381-388. Retrieved from https://doi.org/10.1016/j.triboint.2017.11.032 [30] Liana MariaMuresan, 2015, “Chapter 17-Corrosion Protective Coatings for Ti and Ti Alloys Used for Biomedical Implants”, Intelligent Coatings for Corrosion Control, Pages 585-602. Retrieved from https://doi.org/10.1016/B978-0-12-411467-8.00017-9 [31] 蘇青森,2003,真空技術精華,五南圖書出版股份有限公司,臺北市。 [32] 楊雲凱,”物理氣相沉積(PVD)介紹”,奈米通訊,22卷,頁33~35。Retrieved from http://www.ndl.narl.org.tw/docs/publication/22_4/pdf/E5.pdf. [33] 郭亭瑩,2005,”反應性直流濺鍍氧化鎢薄膜之電漿參數對其微觀組織及 電致色變特性之影響”,逢甲大學材料科學與工程學系碩士論文 [34] 蔡定平,2001,真空技術與應用,國家實驗研究院儀器科技研究中心出 版,新竹市 [35] 陳柏諺,2009,”不鏽鋼基材Ti-Al-Si-N薄膜之高溫氧化性能”,明道大學材 料科學與工程研究所碩士論文。 [36] A. Anders, 2010, “A structure zone diagram including plasma-based deposition and ion etching”, Thim solid films, 518, pp. 4087-4090. Retrieved from https://doi.org/10.1016/j.tsf.2009.10.145 [37] A.C. Alves and F. Wenger, 2017,”Corrosion mechanisms intitanium oxide-based films produced by anodic treatment”, Electrochimica Acta , Volume 234, 20 , pp 16-27 . Retrieved From https://doi.org/10.1016/j.electacta.2017.03.011 [38] Guolong Wu. et al , 2018, “Influence of the Ti alloy substrate on the anodic oxidation in an environmentally-friendly electrolyte”, Surface and Coatings Technology Volume 344, 25 pp. 680-688. Retrieved From https://doi.org/10.1016/j.surfcoat.2018.04.001 [39] N.A. Sapoletova, S.E. Kushnir, K.S. Napolskii, 2018,”Anodic titanium oxide photonic crystals prepared by novel cyclic anodizing with voltage versus charge modulation”, Electrochemistry Communications Volume 91, pp. 5-9. Retrieved From https://doi.org/10.1016/j.elecom.2018.04.018 [40] Joanna Kapusta-Kołodziej, Karolina Syrek, 2017, “Effects of anodizing potential and temperature on the growth of anodic TiO2 and its photoelectrochemical properties”, Applied Surface Science Volume 396, 28 ,pp. 1119-1129. Retrieved From https://doi.org/10.1016/j.apsusc.2016.11.097 [41] Y. Wang, B. et al, 2004,” Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse”, Materials Letters Volume 58, Issues 12–13,pp.1907-1911. Retrieved From https://doi.org/10.1016/j.matlet.2003.11.026 [42] E. Matykina. et al, 2007 ,”Real-time imaging of coating growth during plasma electrolytic oxidation of titanium”, Electrochimica Acta Volume 53, Issue 4, 31 ,pp. 1987-1994. Retrieved From https://doi.org/10.1016/j.electacta.2007.08.074 [43] Y. Yan. et al, 2010, “Effect of NaAlO2 concentrations onmicrostructure and corrosion resistance of Al2O3/ZrO2 coatings formed on zirconium by microarc oxidation”, Applied Surface Science Volume 256, Issue 21,pp 6359-6366. Retrieved From https://doi.org/10.1016/j.apsusc.2010.04.017 [44] S. Durdu, M. Usta, 2012 , ”Characterization and mechanical properties of coatings on magnesium by micro arc oxidation”, Applied Surface Science Volume 261, pp 774-782. Retrieved From https://doi.org/10.1016/j.apsusc.2012.08.099 [45] M. Babaei, C. Dehghanian, M. Vanaki, 2015, “Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different”, Applied Surface Science Volume 357, Part A, pp 712-720. Retrieved From https://doi.org/10.1016/j.apsusc.2015.09.059 [46] Y. Cheng. et al, 2015, “High growth rate, wear resistant coatings on an Al–Cu–Li alloy by plasma electrolytic oxidation in concentrated aluminate electrolytes”, Surface and Coatings Technology Volume 269, pp 74-82. Retrieved From https://doi.org/10.1016/j.surfcoat.2014.12.078 [47] M. Shokouhfar, S.R. Allahkaram, 2017, “Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation”, Surface and Coatings Technology Volume 309, 15 ,pp 767-778. Retrieved From https://doi.org/10.1016/j.surfcoat.2016.10.089 [48] R.W. Schutz, L.C. Covington,1981 Effect of Oxide Films on the Corrosion Resistance of Titanium, Corrosion 37 , 585–591. Retrieved From http://corrosionjournal.org/doi/10.5006/1.3577542 [49] T. Fukuzuka et al,1980, “Titanium’80 Science and Technology: Proceedings of the Fourth International Conference on Titanium”, pp. 2783–2792. Retrieved From https://searchworks.stanford.edu/view/1446080 [50] P.A. Dearnley, K.L. Dahm, H. Çimenoglu, 2004, “The corrosion–wear behaviour of thermally oxidised CP-Ti and Ti–6Al–4V”, Wear Volume 256, Issue 5, pp 469-479. Retrieved From https://doi.org/10.1016/S0043-1648(03)00557-X [51] E. Arslan, Y. Totik, E. Demirci, A. Alsaran,” Influence of Surface Roughness on Corrosion and Tribological Behavior of CP-Ti After Thermal Oxidation Treatment”, Journal of Materials Engineering and Performance , Volume 19, Issue 3, pp 428–433. Retrieved From https://link.springer.com/journal/11665 [52] Satendra Kumar.et al. 2009, “Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time”, Materials Science and Engineering: C Volume 29, Issue 6, Pages 1942-1949. Retrieved From https://doi.org/10.1016/j.msec.2009.03.007 [53] A. Ravi Shankar, N.S. Karthiselva, U. Kamachi Mudali, 2013, “Thermal oxidation of titanium to improve corrosion resistance in boiling nitric acid medium”, Surface and Coatings Technology Volume 235, pp 45-53. Retrieved From https://doi.org/10.1016/j.surfcoat.2013.07.010 [54] Jeng, Y.R., 1996, “Impact of plateaued surfaces on tribological Performance”, Tribology Transactions Volume 39, Issue 2, pp354-361. Retrieved From https://www.tandfonline.com/doi/abs/10.1080/10402009608983538 [55] Willis, E., 1986, “Surface finish in relation to cylinder liners”, Wear Volume 109, Issues 1–4,pp 351-366. Retrieved From https://doi.org/10.1016/0043-1648(86)90278-4 [56] Komvopoulos, K, 2003, J. Adhes. Sci. Technol, “Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory”, Journal of Adhesion Science and Technology Volume 17, Issue 4, pp 477-517. Retrieved From https://www.tandfonline.com/doi/abs/10.1163/15685610360554384?journalCode=tast20 [57] Hamilton, D. B., Walowit, J. A., and Allen, C. M., 1966, ASME J. of Basic Engineering, A Theory of lubrication by microasperities, Basic Eng 88(1), pp177-185. Retrieved From http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1432484 [58] Anno, J. N., Walowit, J. A. and Allen, C. M., 1968, ASME J. of Lubrication Technology, Microasperity lubrication. Retrieved From http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1461343 [59] Anno, J. N., Walowit, J. A. and Allen, C. M., 1969,Technology, Load support and leakage from microasperity-lubricated face seals, J. of Lubrication Tech 90(2),pp 351-355. Retrieved From http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1461712 [60] Etsion, I. and Burstein, L, 1996,” A model for mechanical seals with regular microsurface structure”, Tribology Transactions Volume 39, Issue 3, pp677-683. Retrieved From https://www.tandfonline.com/doi/abs/10.1080/10402009608983582 [61] Izhak Etsion, 2004,” State of the Art in Laser Surface Texturing”, ASME 7th Biennial Conference on Engineering Systems Design and Analysis Volume 1 pp585-593. Retrieved From http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1467274 [62] Etsion I, 2004, Tribol Lett , Improving tribological performance of mechanical components by laser surface texturing . Retrieved From https://link.springer.com/article/10.1007/s11249-004-8081-1 [63] Wang XL,Kato K,Adachi K., 2002, Tribol Trans , The lubrication effect of micro- pits on parallel. Retrieved From https://www.tandfonline.com/doi/abs/10.1080/10402000208982552 [64] Takeshi Nakatsuji, Atsunobu Mori, 2002, Coal Mine Machinery Numerical simulation and experiment study on microcosmic potholes lubrication of sliding guide surface. Retrieved From https://link.springer.com/article/10.1023/A:1016348803781 [65] Xiaolei Wang. et al, 2006, “Optimization of the surface texture for silicon carbide sliding in water”, Applied Surface Science Volume 253, Issue 3, pp 1282-1286 Retrieved From. https://doi.org/10.1016/j.apsusc.2006.01.076 [65] Izhak Etsion, 2005, TECHNICAL PAPERS, State of the Art in Laser Surface Texturing. Retrieved From http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1467274 [66] A.Shinkarenko, Y.Kligerman, I.Etsion, 2008, “The effect of surface texturing in soft elasto-hydrodynamic lubrication”, Tribology International Volume 42, Issue 2, pp 284-292. Retrieved From https://doi.org/10.1016/j.triboint.2008.06.008 [67] G. Ryk, I. Etsion, 2006, “Testing piston rings with partial laser surface texturing for friction reduction”, Wear Volume 261, Issues 7–8, 20 ,pp 792-796. Retrieved From https://doi.org/10.1016/j.wear.2006.01.031 [68] P.Anderssona, J.Koskinena, 2007, Microlubrication effect by laser-textured steel Surfaces, Wear Volume 262, Issues 3–4, 4 pp 369-379. Retrieved From https://doi.org/10.1016/j.wear.2006.06.003 [69] Jing Zhou , HongShen , YanqingPan , Xiaohong Ding, 2015, “Experimental study on laser microstructures using long pulse”, Optics and Lasers in Engineering Volume 78, pp 113-120. Retrieved From https://doi.org/10.1016/j.optlaseng.2015.10.009 [70] Renu Kumari. et al , 2015,” Laser Surface Textured Titanium Alloy(Ti–6Al–4V) – Part II – Studies on bio-compatibility”, Applied Surface Science Volume 357, Part A,pp 750-758. Retrieved From https://doi.org/10.1016/j.apsusc.2015.08.255 [71] S. Arul Xavier Stango. et al, 2018, “Development of hydroxyapatite coatings on laser textured 316 LSS and Ti- 6Al-4V and its electrochemical behavior in SBF solution for orthopedic applications”, Ceramics International Volume 44, Issue 3, pp 3149-3160. Retrieved From https://doi.org/10.1016/j.ceramint.2017.11.083 [72] Chen F. et al , Langmuir, Anisotropic wetting on microstrips surface fabricated by femtosecond laser. Retrieved From https://pubs.acs.org/doi/abs/10.1021/la103293j [73] Zhang DS. et al , 2011, “Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser”, Soft Matter, 2011,7, 8337-8342. Retrieved From http://pubs.rsc.org/en/content/articlelanding/2011/sm/c1sm05649b#!divAbstract [74] Zhang JH. et al, 2010, “Colloidal selfassembly meets nanofabrication: from two- dimensional colloidal crystals to nanostructure arrays” Adv Mater, Volume22, Issue38, Pages 4249-4269 . Retrieved From https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201000755 [75] Shchukin DG. et al , 2011, “Ultrasonic cavitation at solid surfaces”. Adv Mater, Volume23, Issue17, Pages 1922-1934. Retrieved From https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201004494 [76] Zahner D. et al , “A facile approach to superhydrophilic–superhydrophobic patterns in porous polymer films” Adv Mater, Volume23, Issue27 Pages 3030-3034. Retrieved From https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201101203 [77] Cortese B. et al , 2008, “Langmuir,Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces”. Langmuir, 24 (6), pp 2712–2718 Retrieved From https://www.ncbi.nlm.nih.gov/pubmed/18217778 [78] Pernites RB, Ponnapat i RR, Advincula RC, 2011,Superhydrophobic– superoleophilic polythiophene films with tunable wetting and electrochromism, Advanced materials Volume23, Issue28 Pages 3207-3213. Retrieved From https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201100469 [79] Mirhosseini N. et al , 2007,”Laser surfacemicro-texturing of Ti-6Al-4V substrates for improved cell integration”, Applied Surface Science Volume 253, Issue 19, pp. 7738-7743 Retrieved From https://www.sciencedirect.com/science/article/pii/S0169433207003406 [80] Luo BH. et al , 2010, “Preparation of Hydrophobic surface on steel by patterning using laser ablation process”, Surf Coat Technol, Volume 204, Issue 8, Pages 1180-1185. Retrieved From https://www.sciencedirect.com/science/article/pii/S0257897209008512 [81] Ma CH. et al, 2013, “Improving hydrophobicity of laser textured SiC surface with micro-square convexes”, Appl Surf Sci, Volume 266, pp 51-56, Retrieved From https://www.sciencedirect.com/science/article/pii/S0169433212020260 [82] Jagdheesh R, 2014, Langmuir, Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses. Retrieved From https://pubs.acs.org/doi/abs/10.1021/la5033527 [83] Cheng-juan Yang, Xue-song Mei, 2015, Adv Manuf Technol, Modification of wettability property of titaniumby laser texturing. Retrieved From https://link.springer.com/article/10.1007/s00170-016-8601-9 [84] 羅聖全,2013,”科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)”,科 學研習,頁2~4。取自https://www.ntsec.gov.tw/FileAtt.ashx?id=2182. [85] 林麗娟,1994,”X光繞射原理及其應用”,工業材料雜誌,86期,頁 100~109。取自 https://www.materialsnet.com.tw/AD/ADImages/%E5%BB%A3%E5%91%8A/MCLM100/download/equipment/XR/TF-XRD/TF-XRD001.pdf. [86] 黃振賢,蔡錫鐃,2001,材料實驗,文京圖書有限公司,臺中市。 [87] 張育唐,陳擖然,“接觸角(Contact Angle)”,國科會高瞻自然科學教 學資源平台。取自 http://highscope.ch.ntu.edu.tw/wordpress/?p=27484 [88] 楊聰仁,“腐蝕電化學分析”。取自 http://www.dzc.com.tw/tw_images/overview/5.pdf [89] 鐘琍菁,2013, ”電化學阻抗頻譜分析技術之發展與應用方向”,材料世界 網。 Retrieved From https://www.materialsnet.com.tw/DocView.aspx?id=11514 [90] 交流阻抗法,台灣WIKI。取自 http://www.twwiki.com/wiki/%E4%BA%A4%E6%B5%81%E9%98%BB%E6%8A%9 7%E6%B3%95 [91] Dongyun Guo. et al, 2013, “Effect of laser power on orientation and microstructure of TiO2 films prepared by laser chemical vapor deposition method”, Materials Letters, 93, pp. 179-182. Retrieved from https://doi.org/10.1016/j.matlet.2012.11.121. [92] Dongyun Guo, Akihiko Ito, Takashi Goto, Rong Tu, Chuanbin Wang, Qiang Shen, Lianmeng Zhang, 2013, “Effect of laser power on orientation and microstructure of TiO2 films prepared by laser chemical vapor deposition method”, Materials Letters, 93, pp. 179-182. Retrieved from https://doi.org/10.1016/j.matlet.2012.11.121. [93] Robabeh Jafari, Beitallah Eghbali, Maryam Adhami , 2018¸“Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites”, Materials Chemistry and Physics 213 313-323 Retrieved from https://doi.org/10.1016/j.matchemphys.2018.04.001 [94] M. A. Montealegre, et al., 2010, “Surface treatments by laser technology” Contemporary Materials, I−1 Retrieved from http://www.savremenimaterijali.info/sajt/doc/file/1-3%20montealegre.pdf [95] A.M. Abd El-Rahman, 2015, “Synthesis and annealing effects on the properties of nanostructured TieAleVeN coatings deposited by plasma enhanced magnetron”, Materials Chemistry and Physics 149-150, Retrieved from https://doi.org/10.1016/j.matchemphys.2014.10.004 [96] G. Ryk, Y.Kligerman, I.Etsion, 2002,” Experimental Investigation of Laser Surface Texturing for Reciprocating Automotive Components”, Tribology Transactions, 45:4,pp. 444-449. Retrieved from http://dx.doi.org/10.1080/10402000208982572 [97] Cheng-juan Yang. et al, 2016, “Modification of wettability property of titaniumby laser texturing”, Volume 87, Issue 5–8, pp 1663–1670. Retrieved fromhttps://link.springer.com/article/10.1007/s00170-016-8601-9 [98] S. Arul Xavier Stango. et al, 2018,” Development of hydroxyapatite coatings on laser textured 316 LSS and Ti-6Al-4V and its electrochemical behavior in SBF solution for orthopedic applications”, Ceramics International Volume 44, Issue 3, pp 3149-3160. Retrieved from https://doi.org/10.1016/j.ceramint.2017.11.083 [99] Ranjith G. Nair. et al, 2011, Enhanced visible light photocatalytic disinfection of gram negative, pathogenic Escherichia coli bacteria with Ag/TiV oxide nanoparticles Colloids and Surfaces B: Biointerfaces 86 7–13. Retrieved from https://doi.org/10.1016/j.colsurfb.2011.03.011 [100] Xiaoxue Zhang, Ling Wangb, Erkki Leva, 2013, “Superhydrophobic surfaces for the reduction of bacterial adhesion”, RSC Advances. Retrieved from http://pubs.rsc.org/en/content/articlelanding/2013/ra/c3ra40497h#!divAbstract
|