1.吳旭志、賴淑貞譯,「資料採礦理論與實務」,維科圖書有限公司,2001年。
2.邱創政,「以消費表現為基礎之顧客群集分析」,碩士論文,元智大學工業工程與管理研究所,民國92年6月。3.周仕雄,「應用螞蟻系統於資料挖礦之集群分析」,碩士論文,國立台北科技大學生產系統工程與管理研究所,民國91年6月。4.黃志雄,「應用資料採礦分析線上拍賣市場之模式」,碩士論文,朝陽科技大學工業工程與管理所,民國91年6月。5.陳麗君,「應用資料探勘技術於信用卡黃金級客戶之顧客關係管理」,碩士論文,元智大學工業工程與管理研究所,民國92年6月。6.蘇育霆,「整合模糊理論與自適應共振理論II神經網路於資料採礦之集群技術」,碩士論文,國立台北科技大學生產系統工程與管理研究所,民國90年6月。7.Ankerst M., M. M. Breunig, H-P. Kriegel and J. Sander, “OPTICS: Ordering Points to Identify the Clustering Structure,” SIGMOD, 1999.
8.Agrawal R., J. Gehrke, D. Gunopulos and P. Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications,” SIGMOD, 1998, pp.94-105.
9.Berry M.J.A. and G. Linoff, Data Mining Technique for Marketing, Sale, and Customer Support, Wiley Computer, 1997.
10.Cabena P., P. O. Hadjinaian, D. R. J. Stadler, J. Verhees and A. Zanasi, Discovering Data Mining from Concept to Implementation, Prentice Hall, 1997.
11.Chinrungrueng C. and C. H. Sequin, “Optimal Adaptive K-Means Algorithm with Dynamic Adjustment of Learning Rate,” IEEE Transactions on Neural Networks, Vol. 6, No. 1, 1995, pp.157-169.
12.Dorigo M., V. Maniezzo and A. Colorni, “The Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 26, No. 1, 1996, pp.29-41.
13.Di Caro, G. and M. Dorigo, “AntNet: Distributed Stigmergetic Control for Communications Networks”, Journal of Artificial Intelligence Research 9, 1998, pp.317-365.
14.Duda R. O. and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, NY, USA, 1973.
15.Ester M., H. Kriegel, J. Sander and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proc. of the 2nd Int''l Conf. on Knowledge Discovery in Databases, Menlo Park, CA., 1996, pp.226-231.
16.Fayyad U., G. Piatetsky and P. Smyth, “From Data Mining to Knowledge Discovery in Databases,” AI Magazine, 1996, pp.37-54.
17.Freisleben B. and P. Merz, “A Genetic Local Search Algorithm for Solving Symmetric and Asymmetric Traveling Salesman Problems,” Proc. of the IEEE International Conference on Evolutionary Computation, 1996, pp.616-621.
18.Gambardella L.M., E. D. Taillard and G. Agazzi, “MACS-VRPTW: a Multipleant Colony System for Vehicle Routing Problems with Time Windows,” D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, London, 1999, pp.63-76.
19.Gambardella L.M. and M. Dorigo, “HAS-SOP: Hybrid Ant System for the Sequential Ordering Problem,” Technical Report IDSIA, IDSIA, Lugano, Switzerland, 1997, pp.11-97.
20.Grupe G. H. and M. M. Owrang, “Database Mining Discovering New Knowledge and Cooperative Advantage,” Information Systems Management, Vol. 12, No. 4, 1995, pp.26-31.
21.Guha S., R. Rastogi and K. Shim, “CURE: An Efficient Clustering Algorithm for Large Databases,” Proc. of the ACM SIGMOD Int''l Conf. on Management of Data, Seattle, WA., 1998, pp.73-84.
22.Han J. and M. Kamber, Data Mining : Concepts and Techniques, Morgan Kaufmann Publisher, San Francisco, 2001.
23.Hinneburg A. and D. A. Keim, “An Efficient Approach to Clustering in Multimedia Databases with Noise,” Proc. 4th Int’l Conf. on Knowledge Discovery and Data Mining, New York, AAAI Press, 1998.
24.Hall L. O., I. B. Ozyurt and J. C. Bezdek, “Clustering with a Genetically Optimized Approach,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, 1999, pp.103-112.
25.Huang Z., “Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values,” Data Mining and Knowledge Discovery 2, 1998, pp.283-304.
26.Jain A. K. and R. C. Dubes, Algorithms for Clustering Data, Advanced reference series. Prentice-Hall, Upper Saddle River, New York, 1998.
27.Kaufman L. and P. J. Rousseeuw, Finding Groups in Data : An Introduction to Cluster Analysis, Wiley, New York, 1990.
28.Krishna K. and M. N. Murty, “Genetic K-Means Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 29, No. 3, 1999, pp.433-439.
29.Kanungo T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and A. Y. Wu, “An Efficient K-Means Clustering Algorithm : Analysis and Implementation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, 2002, pp.881-892.
30.MacQueen J., “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281-297.
31.Maniezzo V., “Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem,” INFORMS Journal on Computing, 1999, pp.358-369.
32.Michel R. and M. Middendorf, “An Island Based Ant System with Lookahead for the Shortest Common Supersequence Problem,” Proc. of the Fifth International Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Vol. 1498, 1998, pp.692-708.
33.McMullen P. R., “An Ant Colony Optimization Approach to Addressing a JIT Sequencing Problem with Multiple Objectives,” Artificial Intelligence in Engineering, Vol. 15, 2001, pp.309-317.
34.Rosenkrantz D. J., R. E. Stearns and P. M. Lewis, “An Analysis of Several Heuristics for the Traveling Salesman Problem,” SIAM J. Comput., Vol. 6, 1977, pp. 563-581.
35.Sarafis I., A. M. S. Zalzala and P. W. Trinder, “A Genetic Rule-Based Data Clustering Toolkit,” Proc. of the 2002 Congress on Evolutionary Computation CEC2002, pp.1238-1243.
36.Sheikholeslami G., S. Chatterjee and A. Zhang, “WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases,” VLDB''98, Proc. of 24th International Conference on Very Large Data Bases, New York, USA, 1998, pp.428-439.
37.Shaw M. J., C. Subramaniam and G. W. Tan, “Knowledge management and data mining for marketing,” Decision Support Systems, 31, 2001, pp.127-137.
38.Su M. C. and H. T. Chang, “Fast Self-Organizing Feature Map Algorithm,” IEEE Transactions on Neural Networks, Vol. 11, No. 3, 2000, pp.721-731.
39.Stutzle T. and H. H. Hoos, “The MAX — MIN Ant System and Local Search for the Traveling Salesman Problem,” Proc. of the IEEE International Conference on Evolutionary Computation, 1997, pp.309-314.
40.Stutzle T. and M. Dorigo, “ACO Algorithms for the Quadratic Assignment Problem,” D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, Mc-Graw Hill, 1999, pp.33-50.
41.Tsai C. F., H. C. Wu and C. W. Tsai, “A New Data Clustering Approach for Data Mining in Large Databases,” Proc. of the International Symposium on Parallel Architectures, Algorithms and Networks, 2002.
42.Tsai C. F., Z. C. Chen and C. W. Tsai, “MSGKA : An Efficient Clustering Algorithm for Large Databases,” Systems, Man and Cybernetics, 2002 IEEE International Conference on , Vol.5 , pp.6-9.
43.Vesanto J. and E. Alhoniemi, “Clustering of the Self-Organizing Map,” IEEE Transactions on Neural Networks, Vol. 11, No. 3, 2000, pp.586-600.
44.Wang W., J. Yang and R. Munts, “STING: A Statistical Information Grid Approach to Spatial Data Mining,” Proc. of the 23rd conf. on Very Large Data Bases, Athens, Greece, 1997, pp.186-195.
45.Wang X. R. and T. J. Wu, “Ant Colony Optimization for Intelligent Scheduling,” Proc. of the 4th World Congress on Intelligent Control and Automation, 2002, pp.66-70.
46.Yang X. B., J. G. Sun and D. Huang, “A New Clustering Method Based on Ant Colony Algorithm,” Proc. of the 4th World Congress on Intelligent Control and Automation, Vol. 3, 2002, pp.2222 -2226.
47.Zhang T., R. Ramakrishnan and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proc. of the ACM SIGMOD Int''l Conf. on Management of Data, Montreal, Canada, 1996, pp.103-114.
48.Zhang R. and A. I. Rudnicky, “A Large Scale Clustering Scheme for Kernel K-Means,” Pattern Recognition, 2002. Proc. 16th International Conference on, Vol. 4, 2002, pp.289-292.