|
[1]G. Iori, F. Heyer, V. Kilappa, 2018, “BMD-based assessment of local porosity in human femoral cortical bone”, Bone, 114, 50-61. [2]王盈錦,2002,生物醫學材料,合計圖書出版社,臺北市。 [3]崔福齋、馮慶玲,2004,生物材料學,清華學出版社,北京。 [4]俞耀庭、張興樑,2000,生物醫用材料,天津大學出版社,天津。 [5]鄭玉峰、李莉,2009,生物用材料學,西北工業大學出版社,西安。 [6]J. L. Dziki and S. F. Badylak , 2018, Immunomodulatory biomaterials, 51-57. [7]洪炳南,1983,生物材料在醫學上的應用,科學月刊,第167期。 [8]J. Jiao, L. Zreiqat, 2018, “Tissue Response to Biomaterials”, Reference Module in Biomedical Sciences. [9]H. Kawahara, 1987, Bioceramics for hard tissue replacements, 181-206. [10]A. R. Armiento, M.J.Stoddart, M.Alini, D.Eglin, 2018, “Biomaterials for articular cartilage tissue engineering: Learning from biology”, Acta Biomaterialia, 65, 1-20. [11]L. Hench, J. M. Polak, 2002, “Third-generation biomedical materials”, Science, 295, 1014-1017. [12]H. Waizy, et al., 2013, “Biodegradable magnesium implant for orthopedic applications”, J. Mater. Sci, 48, 39-50. [13]F. Lewis, 2008, Study of the adhesion of thin plasma fluorocarbon coatings resisting plastic deformation for stent applications. [14]D. R. Askeland, 1994, “The science and engineering of materials”, 3rd ed, PWS publishing Co. [15]M. Xiao, et al., 2017, “Bio-functionalization of biomedical metals”, Materials Science and Engineering, 70, 1057-1070. [16]A. V. Okulov, et al., “Dealloying-based metal-polymer composites for biomedications”, Scripta Materialia, 146, 15, 290-294. [17]Q. Huang, et al., 2018, “The osteogenic, inflammatory and osteo-immunomodulatory performances of biomedical Ti-Ta metal–metal composite with Ca- and Si-containing bioceramic coatings”, Colloids and Surfaces B: Biointerfaces, 169, 49-59. [18]R. L., et al., 2018, “Recent progress on biodegradable materials and transient electronics”, Bioactive Materials, 3, 3, 322-333. [19]J. Qin, et al., 2016, “Research process on property and application of metal porous materials”, Journal of Alloys and Compounds, 654, 5, 39-44. [20]M. Akmal, A. Raza, M. M.Khan, 2016, “Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant”, Materials Science and Engineering: C, 68, 1, 30-36 [21]A.F. Khan, et al., 2014, “Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration”, Materials Science and Engineering: C, 35, 245-252. [22]G. Daculsi, O. Malard, E. Goyenvalle, 2005, “Efficacy and performance of bone substitute for bone reconstruction in place of allograft and autograft”, ITBM-RBM, 26, 3, 218-222. [23]X. Wang, et al., 2018, “Influence of surface structures on biocompatibility of TiO2/HA coatings prepared by MAO”, Materials Chemistry and Physics, 215, 339-345. [24]T. Masaoka, et al., 2016, “Biomechanical evaluation of the rabbit tibia after implantation of porous hydroxyapatite/collagen in a rabbit model”, Journal of Orthopaedic Science, 21, 2, 230-236. [25]K. Shanmugam, R. Sahadevan, 2018, 1 - Bioceramics—An introductory overview, Fundamental Biomaterials: Ceramics, Wood head Publishing Series in Biomaterials, 1-46. [26]L. Fu, et al., 2018, “Biodegradable Si3N4 bioceramic sintered with Sr, Mg and Si for spinal fusion: Surface characterization and biological evaluation”, Applied Materials Today, 12, 260-275. [27]M. Dehestani, et al., 2017, “Improving bioactivity of inert bioceramics by a novel Mg-incorporated solution treatment”. [28]T. Masuda, M. Ukiki, Y. Yamagishi, 2018, “Fabrication of engineered tubular tissue for small blood vessels via three-dimensional cellular assembly and organization in vivo”, Journal of Biotechnology, 276-277, 20, 46-53 [29]M. Musioł, et al., 2018, “(Bio)degradable polymeric materials for a sustainable future – part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life”, Waste management, Poland. [30]J. Bico, U. Thiele, D. Quere, 2002, “Wetting of texture surfaces”, Colloid and Surfaces A:Physicochemical and Engineering Aspects, 206, 41-46. [31]Quere, D., 2002, “Fakir droplets: surface chemistry”, Nature Materials, 1, 14-15. [32]S. Shibuichi, T. Yamamoto, T. onda, et al, 1998, “Super water-and oil-repllent from fractal structure”, Journal of Colloid and Interface Science, 208, 287-279. [33]M. M. Avedesian, N. Magnesium, 1999, “ASM Specialty Handbook-Magnesium and Magnesium Alloys”, Mater. Information Society, 14-15. [34]Y. Song, et al., 2012, “The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys”, Corros. Sci., 65, 322-330. [35]J. Nagels, M. Stokdijk, P. M. Rozing, 2003, “Stress shielding and bone resorption in shoulder arthroplasty”, J. Shoulder Elbow Surg., 12, 35-39. [36]H. M. Wong, et al., 2010, “A biodegradable polymer-based coating to control the performance of magnesium alloy orthopedic implants”, Biomaterials, 31, 2084-2096. [37]M. Speich, B. Bouquet, G. Nicolas, 1981, “Reference values for Ionized, complexed and protein-bound plasma magnesium in men and women”, Clin. Chem, 27, 246-248. [38]D. Nie, et al., 2018,” Bioaccessibility and health risk of trace elements in fine particulate matter in different simulated body fluids”, Atmospheric Environment, 186, 1-8. [39]Y. S. Hong, G. D. Zhang, J. J. Huang, Y. Q. Hao, 2008, “The role of bone induction of biodegradable magnesium alloy”, Acta Metall. Sinica, 44, 1035-1041. [40]B. Zberg, P. J. Uggowitzer, J. F. Loffler, 2009, “MgZnCa glasses without clinically observable hydrogen evolution for Biodegradable implants”, Nature Mater, 8, 887-891. [41]Z. Shi, F. Cao, G.L. Song, M. Liu, A. Atrens, 2013, “Corrosion behaviour in salt spray and in 3.5%NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys: RE = Ce, La, Nd, Y, Gd”, Corros. Sci., 76, 98-118. [42]H. Hornderger, S. Virtanen, A. R. Boccaccini, 2012, “Biomedical Coating on magnesium alloys-A review”, Acta Biomater, 8, 2442-2455. [43]H. X. Wang, et al., 2010, “In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electro-deposition process”, Acta Biomater., 6, 1743-1748 [44]Y. Wang, W. Wei, J. C. Gao, 2009, “Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating”, Mater. Sci. Eng. C, 29, 1311-1316. [45]L. Xu, et al., 2009, “In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy”, Biomaterials, 30, 1512-1523. [46]B. Y. Yu, X. L. Pan, J. Y. Uan, 2010, “Enhancement of corrosion resistance of Mg-9wt.%Al-1wt.%Zn alloy by a calcite (CaCO3) conversion hard coating”, Corros. Sci., 52, 1874-1878. [47]Y. W. Song, D. Y. Shan, E. H. Han, 2008, “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application”, Mater. Letters, 62, 17-18, 30, 3276-3279. [48]J. K. Lin, J. Y. Uan, 2009, “Formation of Mg, Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3–/CO32–and corresponding protection against corrosion by the coating”, Corrosion. Science, 51, 5, 1181-1188. [49]Y. Zhu, et al., 2011, “Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31”, Applied Surface Science, 257, 14, 1, 6129-6137. [50]J. Y. Uan, et al., 2010, “Surface coatings for improving the corrosion resistance and cell adhesion of AZ91D magnesium alloy through environmentally clean methods”, Thin Solid Films, 518, 24, 7563-7567. [51]C. W. Yang, 2015, “Development of hydrothermally synthesized hydroxyapatite coatings on metallic substrates and Weibull’s reliability analysis”, 518, 7563-7567. [52]G. K. Toworfe, R. J. Composto, I. M. Shapiro, et al, 2006, “Nucleation and growth of calcium phosphate on amine-, carboxyl-and hydroxyl-silane self-assembled monolayers”, Biomaterials, 27, 631-642. [53]N. Kamiyama, et al, 2016, “Effect of treatment time in the Mg(OH)2/Mg–Al LDH composite film formed on Mg alloy AZ31 by steam coating on the corrosion resistance”, Surface and Coatings Technology, 286, 172-177. [54]Y. Song, E. H. Han, K. Dong, D. Shan, C. D. Yim, B. S. You, (2014), “Study of the corrosion product films formed on the surface of Mg-xZn alloys in NaCl solution”, Corros. Sci., 88, 215-225. [55]C. Ke, et al, 2016, “Influence of surface chemistry on the formation of crystalline hydroxide coatings on Mg alloys in liquid water and steam systems” Corros. Sci., 113, 145-159.. [56]L. Xu, et al, 2009, “In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy”, Biomaterials, 30, 1512-1523. [57]Sanjeet Kumar, et al, 2017, “Thermally sprayed alumina and ceria-doped-alumina coatings on AZ91 Mg alloy”, Surface and Coatings Technology, 332, 533-541. [58]T. F. Kubatil, et al, 2017, “Preparation and properties of plasma sprayed NiAl and NiAl40 coating in AZ91 substrate”, Surface and Coating Technology, 319, 145-154. [59]A. B. Khiabani, et al, 2018, “Improving corrosion behavior and in vitro bioactivity of plasma electrolytic oxidized AZ91 magnesium alloy using calcium fluoride containing electrolyte”, Materials Letters, 212, 98-102. [60]J. W. McCutchen, J.P. Collier, M. B. Mayer, 1990, “Osseointegration of titanium implants in total hip arthroplasty”, Clin. Orthop., 261,114-125. [61]T. M. Mukhametkaliyev, et al, 2017, “A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance”, Materials Science and Engineering C, 75, 95-103. [62]M. Strzelecka, et al, 2015, “Surface modification of the AZ91 magnesium alloy”, Archives of Civil and Mechanical Engineering, 15, 4, 854-861. [63]T. Goto, et al., 2012, “Hydrothermal synthesis of composites of well-crystallized hydroxyapatite and poly (vinyl alcohol) hydrogel”, Mater. Sci. Eng. C, 32, 397-403. [64]Y. Huang, Qing, X. Pang, et al, 2013, “Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings”, Applied Surface Science, 282, 456-462. [65]D. Shi, 2004, “Biomaterials and Tissue Engineering”, Springer, Berlin, Heidelberg, Printed in Germany, 5-8. [66]黃志良,王大偉,劉羽,(2001), 氫氧基磷灰石(HA)製備方法及其研究展武漢化工學院學報,23 ,49-53. [67]M. Yoshimura, H. Suda, 1994, “Hydrothermal Processing of Hydroxyapatite: Past, Present and Future, Hydroxyapatite and Related Materials, edited by P. W. Brown, and B. Constanz, CRC Press Inc, Boca Raton, Florida, 45-72. [68]M. Jarcho, et al., 1976, “Hydroxyapatite synthesis and characterization in dense polycrystalline form”, J. Mater, Sci., 11, 2027-2035. [69]K. Kulpetchdara, et al, 2016, “Influence of the nano hydroxyapatite powder on thermally sprayed HA coatings onto stainless steel”, Surface and Coating Technology, 306, 181-186 [70]M. Ding, et al, 2018, “Synthesis and properties of HA/ZnO/CNT nanocomposite”, Ceramics International, 44, 7, 7746-4453. [71]X. Wamg, et al, 2018, “Surface nano-structure of polyamide 6 film by hydrothermal”, Applied Surface Science, 442, 595-601. [72]A. Szcześ, L. Hołysz, E. Chibowski, 2017, “Synthesis of hydroxyapatite for biomedical applications”, Advances in Colloid and Interface Science, 249, 321-330. [73]N. M. Lozano, et al, 2017, “Crystal growth and structural analysis of hydroxyapatite nanofibers synthesized by the hydrothermal microwave-assisted method”, Ceramics International, 43, 1, 451-457. [74]V. R. Sivaperumal, et al, 2017, “Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite”, Materials Characterization, 134, 416-421. [75]G. M. Hernandez, et al, “Comparative hydrothermal synthesis of hydroxyapatite by using cetyltrimethylammonium bromide and hezamethylentetramine as additives”, Ceramics International, 44, 4, 3658-3663. [76]J. Shen, et al, 2016, “Morphology-controlled synthesis of fluorapatite nano/microstructures via surfactant-assisted hydrothermal process”, Materials and Design, 97, 204-212. [77]A. Bartkowiak, et al, 2018, “Biological effect of hydrothermally synthesized silica nanoparticles within crystalline hydroxyapatite coating for titanium implants”, Materials Science and Engineering C, 92, 88-95. [78]T. Kijima, M. Tsutsumi, 1979, “Preparation and thermal properties of dense poly-crystalline oxyhydroxyapatite”, J. Am. Ceram. Soc., 62, 455-460. [79]G. de With, H.J.A. Vandijk, N. Hattu, et al, 1981, “Preparation microstructure and mechanical properties of dense polycrystalline hydroxyapatite”, J. Mater. Sci, 16, 1592-1598. [80]M. Haïdopoulos, et al., 2005, “Chemical and morphological characterization of ultra-thin fluorocarbon plasma-polymer deposition on 316 stainless steel substrates: a first step toward the improvement of the long-term safety of coated-stents” [81]B. D. Ratner, A. S. Hoffman, F.J. Schoen, 2004, “Correlation, surfaces and biomaterials science”, Biomaterials science: an introduction to materials in medicine (2nd ed), 765-771. [82]J. H. Lee, et al., 1997, “Interaction of cells on chargeable functional group gradient surfaces”, Biomaterials, 18, 351-358. [83]Y. Tamada, Y. Ikada, 1993, “Effect of preadsorbed proteins on cell adhesion to polymer surfaces”, J Colloid Interface Sci., 155, 334-339. [84]J. H. Lee, et al., 1998, “Interaction of different types of cells on polymer surfaces with wettability gradient”, J Colloid Interface Sci, 205, 323-330. [85]Y. Tamada, Y. Ikada, 1986, “Cell attachment to various polymer surfaces”, Polymers in medicine II, 101-115. [86]D. Mandler, 2018, “Chiral self-assembled monolayers in electrochemistry”, Current Opinion in Electrochemistry, 7, 42-47. [87]L. Hao, et al., 2016, “Surface chemistry from wettability and charge for the control of mesenchymal stem cell fate through self-assembled monolayers”, Colloids and Surfaces B: Biointerfaces, 148, 549-556. [88]L. Tack, et al., 2015, “Immobilization of specific proteins to titanium surface using self-assembled monolayer technique”, Dental Materials, 31, 10, 1169-1179. [89]R. Furstner, W. Barthlott, 2005, “Wetting and self-cleaning properties of artificial superhydrophobic surfaces”, Langmuir, 21, 956-961. [90]J. Bico, U. Thiele, D. Quere, 2002, “Wetting of texture surfaces”, Colloid and Surfaces A: Physicochemical and Engineering Aspects, 206, 41-46. [91]Quere, D., 2002, “Fakir droplets: surface chemistry”, Nature Materials, 1, 14-15. [92]S. Shibuichi, et al., 1998, “Super water-and oil-repllent from fractal structure”, Journal of Colloid and Interface Science, 208, 287-279. [93]S. Hata, et al., 2000, “Development of hydrophilic outside mirror coated with titania photocatalyst”, JSAE Review 21, 97, 102, 301-306 [94]C. T. Hsieh, et al., 2005, “Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles”, Applied Surface Science, 240, 318-326. [95]T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, 1996, “Super- water-repellent fractal surfaces”, Langmuir, 12, 2125-2127 [96]J. S. Earl, D.J. Wood, S.J. Milne, 2006, “Hydrothermal synthesis of hydroxyapatite”, J. Phys, Conf. Ser, 26, 26-71. [97]R. Zhu, et al., 2008, “Morphology control of hydroxyapatite through hydrothermal process”, J. Alloys Compd., 457, 555-559. [98]M. Yoshimura and K. Byrappa, 2008, “Hydrothermal processing of materials: past, present and future”, J. Mater. Sci., 43, 2085-2103.
|