|
[1]Wang, Z. L. (2011). Nanogenerators for self-powered devices and systems. [2]Vayssieres, L. (2003). Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 15(5), 464-466. [3]Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. science, 319(5867), 1229-1232. [4]Li, J. F., Huang, Y. F., Ding, Y., Yang, Z. L., Li, S. B., Zhou, X. S., ... & Wang, Z. L. (2010). Shell-isolated nanoparticle-enhanced Raman spectroscopy. nature, 464(7287), 392. [5]Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., & Van Schalkwijk, W. (2011). Nanostructured materials for advanced energy conversion and storage devices. [6]Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246. [7]Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science, 8(8), 2250-2282. [8]Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS nano, 7(11), 9533-9557. [9]Tan, S. T., Chen, B. J., Sun, X. W., Fan, W. J., Kwok, H. S., Zhang, X. H., & Chua, S. J. (2005). Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 98(1), 013505. [10]Sun, X. W., & Kwok, H. S. (1999). Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of applied physics, 86(1), 408-411. [11]Wu, J. J., & Liu, S. C. (2002). Low‐temperature growth of well‐aligned ZnO nanorods by chemical vapor deposition. Advanced materials, 14(3), 215-218. [12]He, H., Cai, W., Lin, Y., & Chen, B. (2010). Surface decoration of ZnO nanorod arrays by electrophoresis in the Au colloidal solution prepared by laser ablation in water. Langmuir, 26(11), 8925-8932. [13]Fan, H. J., Lee, W., Hauschild, R., Alexe, M., Le Rhun, G., Scholz, R., ... & Zacharias, M. (2006). Template‐assisted large‐scale ordered arrays of ZnO pillars for optical and piezoelectric applications. Small, 2(4), 561-568. [14]Tam, K. H., Cheung, C. K., Leung, Y. H., Djurišić, A. B., Ling, C. C., Beling, C. D., ... & Ding, L. (2006). Defects in ZnO nanorods prepared by a hydrothermal method. The Journal of Physical Chemistry B, 110(42), 20865-20871. [15]Ko, Y. H., Nagaraju, G., Lee, S. H., & Yu, J. S. (2014). PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS applied materials & interfaces, 6(9), 6631-6637. [16]Baytekin, H. T., Patashinski, A. Z., Branicki, M., Baytekin, B., Soh, S., & Grzybowski, B. A. (2011). The mosaic of surface charge in contact electrification. Science, 333(6040), 308-312. [17]Fan, F. R., Tian, Z. Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano energy, 1(2), 328-334. [18]Pu, X., Li, L., Liu, M., Jiang, C., Du, C., Zhao, Z., ... & Wang, Z. L. (2016). Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Advanced Materials, 28(1), 98-105. [19]Tang, Q., Wang, X., Yang, P., & He, B. (2016). A solar cell that is triggered by sun and rain. Angewandte Chemie International Edition, 55(17), 5243-5246. [20]Chandrasekhar, A., Khandelwal, G., Alluri, N. R., Vivekananthan, V., & Kim, S. J. (2018). Battery-Free Electronic Smart Toys: A Step toward the Commercialization of Sustainable Triboelectric Nanogenerators. ACS Sustainable Chemistry & Engineering, 6(5), 6110-6116. [21]Hamedani, N. F., & Farzaneh, F. (2006). Synthesis of ZnO nanocrystals with hexagonal (Wurtzite) structure in water using microwave irradiation. Journal of Sciences, Islamic Republic of Iran, 17(3), 231-234. [22]Bragg, W. L. (1920). LXII. The crystalline structure of zinc oxide. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(234), 647-651. [23]Sernelius, B. E., Berggren, K. F., Jin, Z. C., Hamberg, I., & Granqvist, C. G. (1988). Band-gap tailoring of ZnO by means of heavy Al doping. Physical Review B, 37(17), 10244. [24]Roth, A. P., Webb, J. B., & Williams, D. F. (1982). Band-gap narrowing in heavily defect-doped ZnO. Physical Review B, 25(12), 7836. [25]Lin, K. F., Cheng, H. M., Hsu, H. C., Lin, L. J., & Hsieh, W. F. (2005). Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chemical Physics Letters, 409(4-6), 208-211. [26]Mang, A., & Reimann, K. (1995). Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. Solid state communications, 94(4), 251-254. [27]Gorla, C. R., Emanetoglu, N. W., Liang, S., Mayo, W. E., Lu, Y., Wraback, M., & Shen, H. (1999). Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. Journal of Applied Physics, 85(5), 2595-2602. [28]Krunks, M., & Mellikov, E. (1995). Zinc oxide thin films by the spray pyrolysis method. Thin solid films, 270(1-2), 33-36. [29]Yao, B. D., Chan, Y. F., & Wang, N. (2002). Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied physics letters, 81(4), 757-759. [30]Lee, J. H., Ko, K. H., & Park, B. O. (2003). Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. Journal of crystal growth, 247(1-2), 119-125. [31]Carcia, P. F., McLean, R. S., Reilly, M. H., & Nunes Jr, G. (2003). Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 82(7), 1117-1119. [32]Leschkies, K. S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J. E., Carter, C. B., ... & Aydil, E. S. (2007). Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano letters, 7(6), 1793-1798. [33]Meulenkamp, E. A. (1998). Synthesis and growth of ZnO nanoparticles. The Journal of Physical Chemistry B, 102(29), 5566-5572. [34]Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246. [35]Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., & Yang, P. (2001). Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials, 13(2), 113-116. [36]Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654-3656. [37]Wang, J. X., Sun, X. W., Yang, Y., Huang, H., Lee, Y. C., Tan, O. K., & Vayssieres, L. (2006). Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology, 17(19), 4995. [38]Yi, G. C., Wang, C., & Park, W. I. (2005). ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology, 20(4), S22. [39]Liu, B., & Zeng, H. C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125(15), 4430-4431. [40]Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L., & Wang, J. X. (2007). Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters, 90(26), 263501. [41]Martinson, A. B., Elam, J. W., Hupp, J. T., & Pellin, M. J. (2007). ZnO nanotube based dye-sensitized solar cells. Nano letters, 7(8), 2183-2187. [42]Ryu, Y., Lee, T. S., Lubguban, J. A., White, H. W., Kim, B. J., Park, Y. S., & Youn, C. J. (2006). Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 88(24), 241108. [43]Tang, Z. K., Wong, G. K., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., & Segawa, Y. (1998). Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 72(25), 3270-3272. [44]Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., & Gnade, B. E. (1996). Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 79(10), 7983-7990. [45]Lin, B., Fu, Z., & Jia, Y. (2001). Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied physics letters, 79(7), 943-945. [46]方得華, & 楊信興. (2009). 軟性壓電式氧化鋅奈米柱發電機系統. 國家奈米元件實驗室奈米通訊, 16(3), 23-29. [47]Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons. [48]Schroder, D. K. (2006). Semiconductor material and device characterization. John Wiley & Sons. [49]Rivlin, R. S., & Thomas, A. G. (1953). Rupture of rubber. I. Characteristic energy for tearing. Journal of polymer science, 10(3), 291-318. [50]Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246. [51]Bu, S., Cui, C., Wang, Q., & Bai, L. (2008). Growth of ZnO nanowires in aqueous solution by a dissolution-growth mechanism. Journal of Nanomaterials, 2008, 43. [52]Li, H., Zhang, X., Zhu, Y., Li, R., Chen, H., Gao, P., ... & Li, Q. (2014). Hydrothermal deposition of a zinc oxide nanorod array on a carbon nanotube film as a piezoelectric generator. RSC Advances, 4(82), 43772-43777. [53]Liu, C., Yu, A., Peng, M., Song, M., Liu, W., Zhang, Y., & Zhai, J. (2016). Improvement in the piezoelectric performance of a ZnO nanogenerator by a combination of chemical doping and interfacial modification. The Journal of Physical Chemistry C, 120(13), 6971-6977. [54]Ohring, M. (1992). Materials science of thin films. Applied Optics, 31(34), 7162. [55]Bigelow, W. C., Pickett, D. L., & Zisman, W. A. (1946). Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science, 1(6), 513-538. [56]Sagiv, J. (1980). Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 102(1), 92-98. [57]Nuzzo, R. G., & Allara, D. L. (1983). Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 105(13), 4481-4483. [58]Esplandiu, M. J., Hagenström, H., & Kolb, D. M. (2001). Functionalized self-assembled alkanethiol monolayers on Au (111) electrodes: 1. Surface structure and electrochemistry. Langmuir, 17(3), 828-838. [59]Kudelski, A. (2003). Structures of monolayers formed from different HS—(CH2)2—X thiols on gold, silver and copper: comparitive studies by surface‐enhanced Raman scattering. Journal of Raman Spectroscopy, 34(11), 853-862. [60]Bhushan, B. (2001). Modern tribology handbook. 1. Principles of tribology. CRC press. [61]Carpick, R. W., & Salmeron, M. (1997). Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chemical reviews, 97(4), 1163-1194. [62]Sagiv, J. (1980). Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 102(1), 92-98. [63]Silberzan, P., Leger, L., Ausserre, D., & Benattar, J. J. (1991). Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir, 7(8), 1647-1651. [64]Bierbaum, K., Grunze, M., Baski, A. A., Chi, L. F., Schrepp, W., & Fuchs, H. (1995). Growth of self-assembled n-alkyltrichlorosilane films on Si (100) investigated by atomic force microscopy. Langmuir, 11(6), 2143-2150. [65]Irita, M., Yamazaki, S., Nakahara, H., & Saito, Y. (2018, January). Development of a compact FE-SEM and X-ray microscope with a carbon nanotube electron source. In IOP Conference Series: Materials Science and Engineering (Vol. 304, No. 1, p. 012006). IOP Publishing. [66]Faraldos, M., & Goberna, C. (Eds.). (2011). Técnicas de análisis y caracterización de materiales. Editorial CSIC Consejo Superior de Investigaciones Científicas.
|