|
[1] Haake, A. (1989). The role of symmetry in Javanese batik patterns. Computers & Mathematics with Applications, 17(4), 815-826. [2] Achjadi, J., & Minarti, H. (2011). The glory of batik: The Danar Hadi collection. Solo: PT. Batik Danar Hadi. [3] Doellah, S. (2002). Batik, the impact of time and environment. Solo: Danar Hadi. [4] Minarno, A. E., Munarko, Y., Kurniawardhani, A., Bimantoro, F., & Suciati, N. (2014). Texture feature extraction using co-occurrence matrices of sub-band image for batik image classification. 2014 2nd International Conference on Information and Communication Technology (ICoICT). doi:10.1109/icoict.2014.6914074 [5] Setyawan, I., Timotius, I. K., & Kalvin, M. (2015). Automatic batik motifs classification using various combinations of SIFT features moments and k-Nearest Neighbor. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE). doi:10.1109/iciteed.2015.7408954 [6] Rangkuti, A. H., Rasjid, Z. E., & Santoso, D. J. (2015). Batik Image Classification Using Treeval and Treefit as Decision Tree Function in Optimizing Content Based Batik Image Retrieval. Procedia Computer Science, 59, 577-583. doi:10.1016/j.procs.2015.07.551 [7] Setyawan, I., Timotius, I. K., & Kalvin, M. (2015). Automatic batik motifs classification using various combinations of SIFT features moments and k-Nearest Neighbor. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE). doi:10.1109/iciteed.2015.7408954 [8] Wildan, Santi, D. N., Mahfudh, A. A., & Soeleman, M. A. (2017). Image enhancement segmentation Indonesians Batik based on fuzzy C-means clustering using median filter. 2017 International Seminar on Application for Technology of Information and Communication (iSemantic). doi:10.1109/isemantic.2017.8251833 [9] Seng, K. (2009). An Approach to Textile Recognition. Pattern Recognition. doi:10.5772/7531 [10] Nurhaida, I., Manurung, R., & Arymurthy, A. M. (2012). Performance Comparison Analysis Features Extraction Methods for Batik Recognition, International Conference on Advanced Computer Science and Information Systems (ICACSIS). [11] Aditya, C. S., Haniah, M., Bintana, R. R., & Suciati, N. (2015). Batik classification using neural network with gray level co-occurence matrix and statistical color feature extraction. 2015 International Conference on Information & Communication Technology and Systems (ICTS). doi:10.1109/icts.2015.7379892 [12] Mohammed, M. M., Badr, A., & Abdelhalim, M. (2015). Image classification and retrieval using optimized Pulse-Coupled Neural Network. Expert Systems with Applications, 42(11), 4927-4936. doi:10.1016/j.eswa.2015.02.019 [13] Minarno, A. E., Munarko, Y., Kurniawardhani, A., Bimantoro, F., & Suciati, N. (2014). Texture feature extraction using co-occurrence matrices of sub-band image for batik image classification. 2014 2nd International Conference on Information and Communication Technology (ICoICT). doi:10.1109/icoict.2014.6914074 [14] Cao, F., Liu, B., & Park, D. S. (2013). Image classification based on effective extreme learning machine. Neurocomputing, 102, 90-97. doi:10.1016/j.neucom.2012.02.042 [15] Kitipong, A., Rueangsirasak, W., & Chaisricharoen, R. (2013). Classification system for traditional textile: Case study of the batik. 2013 13th International Symposium on Communications and Information Technologies (ISCIT). doi:10.1109/iscit.2013.6645958 [16] Nurhaida, I., Noviyanto, A., Manurung, R., & Arymurthy, A. M. (2015). Automatic Indonesians Batik Pattern Recognition Using SIFT Approach. Procedia Computer Science, 59, 567-576. doi:10.1016/j.procs.2015.07.547 [17] Suciati, N., Pratomo, W. A., & Purwitasari, D. (2014). Batik Motif Classification Using Color-Texture-Based Feature Extraction and Backpropagation Neural Network. 2014 IIAI 3rd International Conference on Advanced Applied Informatics. doi:10.1109/iiai-aai.2014.108 [18] Imanudin. (2010). Batik Identification Based On Batik Pattern And Characteristics Using Fabric Pattern Feature Extraction. [19] Suciati, N., Kridanto, A., Naufal, M. F., Machmud, M., & Wicaksono, A. Y. (2015). Fast discrete curvelet transform and HSV color features for batik image clansificotlon. 2015 International Conference on Information & Communication Technology and Systems (ICTS). doi:10.1109/icts.2015.7379879 [20] Nurhaida, I., Noviyanto, A., Manurung, R., & Arymurthy, A. M. (2015). Automatic Indonesians Batik Pattern Recognition Using SIFT Approach. Procedia Computer Science, 59, 567-576. doi:10.1016/j.procs.2015.07.547 [21] Meyer, P., Noblet, V., Mazzara, C., & Lallenmant, A. (2018). Survey on deep learning for radiotherapy. Computers in Biology and Medicine, 98, 126-146. [22] Qayyum, A., Anwar, S. M., Awais, M., & Majid, M. (2017). Medical image retrieval using deep convolutional neural network. Neurocomputing, 266, 8-20. doi:10.1016/j.neucom.2017.05.025 [23] Samsi, S. S. (2011). Techniques, Motifs & Pattern. Batik Yogya and Solo. [24] Moertini, V. (2005). Towards Classifying Classical Batik Images. [25] Doellah, S. (2002). Batik: Pengaruh zaman dan lingkungan. Surakarta: Danar Hadi. [26] Wicaksono, A. Y., Suciati, N., Fatichah, C., Uchimura, K., & Koutaki, G. (2017). Modified Convolutional Neural Network Architecture for Batik Motif Image Classification. IPTEK Journal of Science, 2(2). doi:10.12962/j23378530.v2i2.a2846 [27] Gomez, L., Alvarez, L., Mazorra, L., & Frery, A. C. (2017). Fully PolSAR image classification using machine learning techniques and reaction-diffusion systems. Neurocomputing, 255, 52-60. doi:10.1016/j.neucom.2016.08.140 [28] Cao, F., Liu, B., & Park, D. S. (2013). Image classification based on effective extreme learning machine. Neurocomputing, 102, 90-97. [29] Hong, R., Pan, J., Hao, S., Wang, M., Xue, F., & Wu, X. (2014). mage quality assessment based on matching pursuit. Information Sciences, 273, 196-211. [30] Hong, R., Tang, J., Tan, H., Ngo, C., Yan, S., & Chua, T. (2011). Beyond search. ACM Transactions on Multimedia Computing, Communications, and Applications, 7(4), 1-18. doi:10.1145/2043612.2043613. [31] Hong, R., Wang, M., Gao, Y., Tao, D., Li, X., & Wu, X. (2014). Image Annotation by Multiple-Instance Learning With Discriminative Feature Mapping and Selection. IEEE Transactions on Cybernetics, 44(5), 669-680. doi:10.1109/tcyb.2013.2265601 [32] Boiman, O., Shechtman, E., & Irani, M. (2008). In defense of Nearest-Neighbor based image classification. 2008 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2008.4587598 [33] Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1-127. doi:10.1561/2200000006 [34] Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep learning – ERRATUM. APSIPA Transactions on Signal and Information Processing, 3. doi:10.1017/atsip.2014.4 [35] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003 [36] Bengio, Y. (2013). Deep Learning of Representations: Looking Forward. Statistical Language and Speech Processing Lecture Notes in Computer Science, 1-37. doi:10.1007/978-3-642-39593-2_1 [37] Bengio, T., Courville, A., Vincent, P. (2013). Representation learning: are view and new perspectives. Pattern Anal. Mach. Intell. IEEE Trans, 35(8), 1798-1828. [38] Guo, Y., Liu, Y., Oerlemans, A. Lao, S., Wu, S., & Michael, S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. [39] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. [40] Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press. [41] Zhou, T., Han, G., Li, B. N., Lin, Z., Ciaccio, E. J., Green, P. H., & Qin, J. (2017). Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method. Comput. Biol. Med, 85. 1-6. [42] Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1-127. doi:10.1561/2200000006 [43] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature 521, 436-444. [44] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Jeroen, A. W. M., Laak, V. D., Ginneken, B. V., Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60-88. [45] Wu, D., Sharma, N., & Blumenstein, M. (2017). Recent advances in video-based human action recognition using deep learning: A review. 2017 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2017.7966210 [46] Bordes, A., Glorot, X., Weston, J., & Bengio, Y. (2012). Joint learning of words and meaning representations for open-text semantic parsing. Proceedings of the AISTATS. [47] Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012). Transfer learning for Latin and Chinese characters with Deep Neural Networks. The 2012 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2012.6252544 [48] Ren, J. S. J., & Xu, L. (2015). On vectorization of deep convolutional neural networks for vision tasks. Proceedings of the AAAI. [49] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Proceedings of the NIPS. [50] Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2012.6248110 [51] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386 [52] Meyer, P., Noblet, V., Mazzara, C., & Lallement, A. (2018). Survey on deep learning for radiotherapy. Computers in Biology and Medicine, 98, 126-146. doi:10.1016/j.compbiomed.2018.05.018 [53] Y. LeCun, Y. Bengio & G. Hinton, Deep learning, Nature Vol.521 (2015) 436-444. [53]LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning, Nature ,521. [54] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386 [55] Farabet, C., Couprie, C., Najman, L., & Lecun, Y. (2013). Learning Hierarchical Features for Scene Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1915-1929. doi:10.1109/tpami.2012.231 [56] Tompson, J., Jain, A., LeCun, Y. & Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. In Proc. Advances in Neural Information Processing Systems, 27, 1799–1807. [57] Szegedy, Liu, Wei, Jia, Pierre, Scott, . . . Reed. (2014, September 17). Going Deeper with Convolutions. Retrieved from https://arxiv.org/abs/1409.4842 [58] Lecun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and applications in vision. Proceedings of 2010 IEEE International Symposium on Circuits and Systems. doi:10.1109/iscas.2010.5537907 [59] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791 [60] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., . . . Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. doi:10.1016/j.patcog.2017.10.013 [61] Krizhevsky, A., Sutskever, I., Hinton G. E. (2012). Imagenet classification with deep convolutional neural networks. Information Processing Systems, 1097-1105. [62] Meyer, P., Noblet, V., Mazzara, C., & Lallement, A. (2018). Survey on deep learning for radiotherapy. Computers in Biology and Medicine, 98, 126-146. doi:10.1016/j.compbiomed.2018.05.018 [63] Guo, Y. (2017). Deep learning for visual understanding. Netherlands: Publisher not identified. [64] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791 [65] A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2012, pp. 1097-1105. [65] Krizhevsky, A., Sutskever, I., Hinton G. E. (2012). Imagenet classification with deep convolutional neural networks. Information Processing Systems, 1097-1105. [66] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2014.81 [67] Farabet, C., Couprie, C., Najman, L., & Lecun, Y. (2013). Learning Hierarchical Features for Scene Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1915-1929. doi:10.1109/tpami.2012.231 [68] Ferreira, A., & Giraldi, G. (2017). Convolutional Neural Network approaches to granite tiles classification. Expert Systems with Applications, 84, 1-11. doi:10.1016/j.eswa.2017.04.053 [69] Yao, G., Lei, T., & Zhong, J. (2018). A review of Convolutional-Neural-Network-based action recognition. Pattern Recognition Letters. doi:10.1016/j.patrec.2018.05.018 [70] Schubert, C. M., Thorsen, S. N., & Oxley, M. E. (2011). The ROC manifold for classification systems. Pattern Recognition, 44(2), 350-362. doi:10.1016/j.patcog.2010.07.025 [71] Figueiredo, M. D., Cordella, C. B., Bouveresse, D. J., Archer, X., Bégué, J., & Rutledge, D. N. (2018). A variable selection method for multiclass classification problems using two-class ROC analysis. Chemometrics and Intelligent Laboratory Systems, 177, 35-46. doi:10.1016/j.chemolab.2018.04.005 [72] Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2012). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9(2), 280-299. doi:10.1007/s11306-012-0482-9 [73] M. de Figueiredo, et al. A variable selection method for multiclass classification problems using two-class ROC analysis. Chemometrics and Intelligent Laboratory Systems 177 (2018) 35–46. [73] Figueiredo, M. D., Cordella, C. B., Bouveresse, D. J., Archer, X., Bégué, J., & Rutledge, D. N. (2018). A variable selection method for multiclass classification problems using two-class ROC analysis. Chemometrics and Intelligent Laboratory Systems, 177, 35-46. doi:10.1016/j.chemolab.2018.04.005 [74] Wu, Y., & Chiang, C. (2016). ROC representation for the discriminability of multi-classification markers. Pattern Recognition, 60, 770-777. doi:10.1016/j.patcog.2016.06.024 [75] Mossman, D. (1999). Three-way ROCs. Medical Decision Making, 19(1), 78-89. doi:10.1177/0272989x9901900110 [76] Nakas, C. T., & Yiannoutsos, C. T. (2004). Ordered multiple-class ROC analysis with continuous measurements. Statistics in Medicine, 23(22), 3437-3449. doi:10.1002/sim.1917 [77] Xiong, C., Belle, G. V., Miller, J. P., & Morris, J. C. (2006). Measuring and estimating diagnostic accuracy when there are three ordinal diagnostic groups. Statistics in Medicine, 25(7), 1251-1273. doi:10.1002/sim.2433 [78] Heckerling, P. S. (2001). Parametric Three-Way Receiver Operating Characteristic Surface Analysis Using Mathematica. Medical Decision Making, 21(5), 409-417. doi:10.1177/0272989x0102100507 [79] He, X., Metz, C., Tsui, B., Links, J., & Frey, E. (2006). Three-class ROC analysis-a decision theoretic approach under the ideal observer framework. IEEE Transactions on Medical Imaging, 25(5), 571-581. doi:10.1109/tmi.2006.871416 [80] Dreiseitl, S., Ohno-Machado, L., & Binder, M. (2000). Comparing Three-class Diagnostic Tests by Three-way ROC Analysis. Medical Decision Making, 20(3), 323-331. doi:10.1177/0272989x0002000309 [81] Nakas, C. T., & Alonzo, T. A. (2007). ROC Graphs for Assessing the Ability of a Diagnostic Marker to Detect Three Disease Classes with an Umbrella Ordering. Biometrics, 63(2), 603-609. doi:10.1111/j.1541-0420.2006.00715.x [82] Edwards, D., Metz, C., & Kupinski, M. (2004). Ideal Observers and Optimal ROC Hypersurfaces in$N$-Class Classification. IEEE Transactions on Medical Imaging, 23(7), 891-895. doi:10.1109/tmi.2004.828358 [83] Edwards, D. C., Metz, C. E., Nishikawa, R. M. (2005). The hypervolume under the ROC hypersurface of ‘‘near-guessing’’ and ‘‘near-perfect’’ observers in N-class classification tasks. IEEE Transactions on Medical Imaging, 24(3), 293-299. [84] Scurfield, B. K. (1996). Multiple-Event Forced-Choice Tasks in the Theory of Signal Detectability. Journal of Mathematical Psychology, 40(3), 253-269. doi:10.1006/jmps.1996.0024 [85] Thorsen, S. N., & Oxley, M. E. (2006). A description of competing fusion systems. Information Fusion, 7(4), 346-360. doi:10.1016/j.inffus.2005.10.003 [86] Ferri, C., Hernández-Orallo, J., & Salido, M. A. (2003). Volume under the ROC Surface for Multi-class Problems. Machine Learning: ECML 2003 Lecture Notes in Computer Science, 108-120. doi:10.1007/978-3-540-39857-8_12 [87] Tsai, H., & Chang, Y. (2017). Facial expression recognition using a combination of multiple facial features and support vector machine. Soft Computing, 22(13), 4389-4405. doi:10.1007/s00500-017-2634-3 [88] Tape, T. (n.d.). Retrieved from http://gim.unmc.edu/dxtests/roc3.htm [89] Basic evaluation measures from the confusion matrix. (2017, September 13). Retrieved from https://classeval.wordpress.com/introduction/basic-evaluation-measures/ [90] Sammut, C. (2017). Concept Learning. Encyclopedia of Machine Learning and Data Mining, 256-259. doi:10.1007/978-1-4899-7687-1_154 [91] Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 340-341, 250-261. doi:10.1016/j.ins.2016.01.033 [92] Kasim, A. A., Wardoyo, R., & Harjoko, A. (2017). The Selection Feature for Batik Motif Classification with Information Gain Value. Communications in Computer and Information Science Soft Computing in Data Science, 106-115. doi:10.1007/978-981-10-7242-0_9. [93] Azhar, R., Tuwohingide, D., Kamudi, D., Sarimuddin, & Suciati, N. (2015). Batik Image Classification Using SIFT Feature Extraction, Bag of Features and Support Vector Machine. Procedia Computer Science, 72, 24-30. doi:10.1016/j.procs.2015.12.101 [94] Nurhaida, I., Manurung, R., & Arymurthy, A. M. (2012). Performance Comparison Analysis Features Extraction Methods for Batik Recognition. Advanced Computer Science and Information Systems (ICACSIS). [95] Wicaksono, A. Y., Suciati, N., Fatichah, C., Uchimura, K., & Koutaki, G. (2017). Modified Convolutional Neural Network Architecture for Batik Motif Image Classification. IPTEK Journal of Science, 2(2). doi:10.12962/j23378530.v2i2.a2846 [96] Minarno, A. E., Munarko, Y., Kurniawardhani, A., & Bimantoro, F. (2016). Classification of Texture Using Multi Texton Histogram and Probabilistic Neural Network. IOP Conference Series: Materials Science and Engineering, 105, 012022. doi:10.1088/1757-899x/105/1/012022 [97] Setyawan, I., Timotius, I. K., & Kalvin, M. (2015). Automatic batik motifs classification using various combinations of SIFT features moments and k-Nearest Neighbor. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE). doi:10.1109/iciteed.2015.7408954 [98] Rangkuti, A. H., Rasjid, Z. E., & Santoso, D. J. (2015). Batik Image Classification Using Treeval and Treefit as Decision Tree Function in Optimizing Content Based Batik Image Retrieval. Procedia Computer Science, 59, 577-583. doi:10.1016/j.procs.2015.07.551 [99] Handhayani, T. (2016). Batik Lasem images classification using voting feature intervals 5 and statistical features selection approach. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA). doi:10.1109/isitia.2016.7828625 [100] Minarno, A. E., Munarko, Y., Kurniawardhani, A., Bimantoro, F., & Suciati, N. (2014). Texture feature extraction using co-occurrence matrices of sub-band image for batik image classification. 2014 2nd International Conference on Information and Communication Technology (ICoICT). doi:10.1109/icoict.2014.6914074 [101] Karimah, F. U., & Harjoko, A. (2017). Classification of Batik Kain Besurek Image Using Speed Up Robust Features (SURF) and Gray Level Co-occurrence Matrix (GLCM). Communications in Computer and Information Science Soft Computing in Data Science, 81-91. doi:10.1007/978-981-10-7242-0_7. [102] Wicaksono, A. Y., Suciati, N., Fatichah, C., Uchimura, K., & Koutaki, G. (2017). Modified Convolutional Neural Network Architecture for Batik Motif Image Classification. IPTEK Journal of Science, 2(2). doi:10.12962/j23378530.v2i2.a2846 [103] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review, Neurocomputing, 187, 27–48. [104] Ferreira, A., & Giraldi, G. (2017). Convolutional Neural Network approaches to granite tiles classification. Expert Systems with Applications, 84, 1-11. doi:10.1016/j.eswa.2017.04.053 [105] 1842796659272142. (2018, May 08). A Beginner's Guide to Convolutional Neural Networks (CNN). Retrieved from https://heartbeat.fritz.ai/a-beginners-guide-to-convolutional-neural-networks-cnn-cf26c5ee17ed [106] 1395550283894582. (2017, September 06). Activation Functions: Neural Networks – Towards Data Science. Retrieved from https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6 [107] Definition of Monte Carlo Simulation - The Economic Times. (n.d.). Retrieved from https://economictimes.indiatimes.com/definition/monte-carlo-simulation [108] 1537208676323317. (2017, August 09). What are Hyperparameters ? and How to tune the Hyperparameters in a Deep Neural Network? Retrieved from https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a [109] CS231n (2018, August, 11). Convolutional Neural Networks for Visual Recognition. Retrieved from http://cs231n.github.io/convolutional-networks/ [110] Chatterjee, S. (2018, July 24). Different Kinds of Convolutional Filters. Retrieved from https://www.saama.com/blog/different-kinds-convolutional-filters/ [111] TensorFlow. (2019, January 06). Retrieved from https://en.wikipedia.org/wiki/TensorFlow [112] Keras. (2018, November 14). Retrieved from https://en.wikipedia.org/wiki/Keras
|