|
[1]M. S. Shur and A. Zukaukas, 2005, "Solid-State Lighting Toward Superior Illumination", Proc. IEEE, 10, 1691-1703 [2]C. M. Tan, B. K. Eric Chen, Y. Y. Foo, R. Y. Chan, G. Xu, and Y. J. Liu, 2008, "Humidity Effect on the Degradation of Packaged Ultra-bright White LEDs," IEEE Electronics Packaging Tech. Conference, 21, 923-928. [3]H. J. Round, 1906, "Carborundum as a Wireless Telegraph Receiver," Electrical World. [4]N. Holonyak, Jr., 1987, "Semiconductor alloy lasers-1962, " IEEE J. Quantum Electronics QE-23, No. 6, pp. 684-691. [5]N. Holonyak, Jr. and S. F. Bevacqua, 1962, "Coherent (visible) light emission from Ga(As1-xPx) junctions, " Appl. Phys. Lett., 1, pp. 82-83. [6]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, 1990, "High performance AlInGaP visible light emitting diodes, " Appl. Phys. Lett., 57, pp. 2937-2939. [7] H. Sugawara, M. I. shikawa, and G. Hatakoshi, 1991, "High-efficiency InAlGaP/GaAs visible light-emitting diodes," Appl. Phys. Lett., 58, pp. 1010-1012. [8]S. Nakamura, T. Mukai, and M. Senoh, 1994, "Candela-class high-brightness InGaNAIGaN double-heterostructure blue-light-emitting", Appl. Phys. Lett., 64, 1687-1689. [9]Y. H. Song, T. Y. Choi, K. Senthil, T. Masaki, and D. H. Yoon, 2012, "Enhancement of photoluminescence properties of green to yellow emitting Y3Al5O12Ce3+ phosphor by AlN addition for white LED applications", Mater. Lett., 67, 184-186. [10]H. G. Choi, B. Y. Moon, and N. J. Kang, 2015, "Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber", Scientia Horticulturae, 189, 22-31. [11]H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee, and D. Y. Jeon, 2008, "White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5: Ce3+, Li+ phosphors," Adv. Mater. 20, 2696-2702. [12]W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, and S. P. DenBaars, 2008, "A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes", Appl. Phys. Lett., 93, 091905. [13]Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, 2006, "Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes," Appl. Phys. Lett., 89, 231909. [14]Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, 2012, "Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications," Optics Lett., 37, 3276-3278. [15]W. T. Liu and W. Y. Huang, 2012, "Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency", Opt. Eng., 51, 104001. [16]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, and M. J. Ludowise, 2002, "Illumination With Solid State Lighting Technology", IEEE J. selected topics in quantum electronics, 8, 310-320 [17]R. Senol, S. Kilic, and K. Tasdelen, 2016, "Pulse timing control for LED plant growth unit and effects on carnation", Computers and Electronics in Agriculture, 123, 125-134. [18]T. Jishi, K. Kimura, R. Matsuda, and K. Fujiwara, 2016, "Effects of temporally shifted irradiation of blue and red LED light on cos lettuce growth and morphology", Scientia Horticulturae, 198, 227-232. [19]W. Chung, H. J. Yu, S. H. Park, B. H. Chun, and S. H. Kim, 2011, "YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index," Mater. Chem. Phys., 126, 162-166. [20]Y. Yang, H. Q. Shi, W. N. Li, H. M. Xiao, Y. S. Luo, S. Y. Fu, and T. Liu, 2011, "Tunable photo-luminescent properties of novel transparent CdSe-QD/silicone nanocomposites," Compos. Sci. Technol., 71, 1652-1658. [21]H. S. Jang and D. Y. Jeon, 2007, "Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes," Appl. Phys. Lett., 90, 041906. [22]W. S. Song, H. J. Kim, Y. S. Kim, and H. Yang, 2010, "Synthesis of Ba2Si3O8:Eu2+ Phosphor for Fabrication of White Light-Emitting Diodes Assisted by ZnCdSe/ZnSe Quantum Dot," J. Electrochem. Soc., 157, J319-J323. [23]H. H. Wu, K. H. Lin, and S. T. Lin, 2012, "A study on the heat dissipation of high power multi-chip COB LEDs", Microelectronics J., 43, 280-287. [24]S. K. Kwak, T. W. Yoo, B. S. Kim, S. M. Lee, Y. S. Lee, and L. S. Park, 2012, "White LED Packaging with Layered Encapsulation of Quantum Dots and Optical Properties", Mol. Cryst. Liq. Cryst. Sci., 564, 33-41. [25]J. K. Park, K. J. Choi, S. H. Park, C. H. Kim, and H. K. Kim, 2005, "Application of Ba2+•Mg2+ Co-doped Sr2SiO4: Eu Yellow Phosphor for White-Light-Emitting Diodes", J. Electrochemical Soc., 152, 121-123. [26]W. Chung, H. J. Yu, S. H. Park, B. H. Chun, and S. H. Kim, 2011, "YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index", Mater. Chem. Phys., 126, 162-166. [27]H. S. Jang, B. H. Kwon, H. Yang, and D. Y. Jeon, 2009, "Bright Three-Band White Light Generated from CdSe/ZnSe Quantum Dot-Assisted Sr3SiO5:Ce3+,Li+-Based White Light-Emitting Diode with High Color Rendering Index", Appl. Phys. Lett., 95,161-901. [28]Z. Liu, S. Liu, K. Wang, and X. Luo, 2009, "Measurement and numerical studies of optical properties of YAG: Ce phosphor for white light-emitting diode packaging", Appl. Opt., 49, 247-257. [29]D. J. Edell, J. Kuzma, and D. Petraitis, 1996, "Silicone Biomaterials," IEEE in Medicine and Biology Society, 2177-2179. [30]S. R. Chung, K. W. Wang, and W. M. Wang, 2013,"Hybrid YAG/CdSe quantum dots phosphors for white light-emitting diodes," J. Nanosci. Nanotech., 13, 4358-4363. [31]A. D. Yoffe, 1993, "Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems", Adv. Phys., 42, 173-266. [32]A. D. Yoffe, 2001, "Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems", Adv. Phys., 50, 1-208. [33]S. R. Chung, 2018, "Full color display fabricated by CdSe bi-colorquantum dots-based white light-emittingdiodes"Optical Mater. Express Vol. 8, Issue 9, pp. 2677-2686 [34]C. B. Murray, D. J. Norris, and M. G. Bawendi, 1993, "Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, " J. Am. Chem. Soc., 115, 8706-8715. [35]Z. A. Peng and X. G. Peng, 2001, "Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor," J. Am. Chem. Soc., 123, 183-184. [36]S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, 2005, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics," Nat. Mater., 4, 138-142. [37]F.W. Wise, 2000, "Lead salt quantum dots: the limit of strong quantum confinement," Acc. Chem. Res., 33, 773-780. [38]L. Qu, Z. A. Peng, and X. Peng, 2001, "Alternative Routes toward High Quality CdSe Nanocrystals", Nano Lett., 1, 6, 333-337. [39]Z. M. Hu, 2019, "Synthesis of green-to-red-emitting Cu-Ga-S/ZnS core/shell quantum dots for application in white light-emitting diodes" Journal of Lumin., 208, 18-23 [40]L. Liu, H. Li, 2019, "The conversion of CuInS2/ZnS core/shell structure from type I to quasi-type II and the shell thickness-dependent solar cell performance" J of Colloid and Interface Science, 546, 276-284 [41]H. Zhang, Y. Wu, 2019, "Accurate intracellular and in vivo temperature sensing based on CuInS2/ZnS QD micelles" J. Mater. Chem. B., 7, 2835-2844 [42]L. Yan, L. Yan, 2016, "Stable and Flexible CuInS2/ZnS:Al-TiO2 Film for Solar-Light-Driven Photodegradation of Soil Fumigant" ACS Appl. Mater. Interfaces, 8, 31, 20048-20056 [43]B. Chen, N. Pradhan, 2018 "From Large-Scale Synthesis to Lighting Device Applications ofTernary I−III−VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters" J. Phys. Chem. Lett.,9, 2, 435-445 [44]C. B. Murray, D. J. Norris, and M. G. Bawendi, 1993, "Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc., 115, 8706-8715. [45]P. M. Allen and M. G. Bawendi, 2008, "Ternary I-III-VI Quantum Dots Luminescent in the Red to Near-Infrared," J. Am. Chem. Soc., 130, 9240-9241. [46]E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, 2010, "Synthesis and Characterization of Near-Infrared Cu-In-Se/ZnS Core/Shell Quantum Dots for In Vivo Imaging," Chem. Mater., 22, 6117-6124. [47]H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, V. Van, F. C. J. M., and G. D. Scholes, 2011, "Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence," J. Phys. Chem. C, 115, 12396-12402. [48]R. G. Xie, M. Rutherford, and X. G. Peng, 2009, "Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors," J. Am. Chem. Soc., 131, 5691-5697. [49]M. Gromova, M. Gromova, 2017, "Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol" J. Am. Chem. Soc., 139, 44, 15748-15759 [50]K. Nose, Y. Soma, T. Omata, and Y. M. Otsuka, 2009, "Synthesis of Ternary CuInS2 Nanocrystals; Phase Determination by Complex Ligand Species," Chem. Mater., 21, 2607-2613. [51]Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, 2011, "Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure," J. Phys. Chem. C, 115, 1786-1792. [52]W. Xin, Z. Liang, X. Xu, W. Nan, F. Jun, J. Wang, and G. Xu, 2015,"A high efficient photoluminescence Zn-Cu-In-S/ZnS quantum dots with long lifetime," J. Alloys and Compounds, 640, 134-140. [53]M. Booth, A. P. Brown, S. D. Evans, and K. Critchley, 2012, "Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient", Chem. Mater., 24, 2064-2070. [54]V. K. Komarala, C. Xie, Y. Q. Wang, J. Xu, and M. Xiao, 2012, "Time-resolved photoluminescence properties of CuInS2/ZnS nanocrystals: influence of intrinsic defects and external impurities, " J. Appl. Phys., 111, 124314-124317. [55]J. Park and S.-W. Kim, 2011, "CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence," J. Mater. Chem., 21, 3745-3750. [56]M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, 2008, "Synthesis of CuInS2 Fluorescent Nanocrystals and Enhancement of Fluorescence by Controlling Crystal Defect," J. Chem. Phys., 129, 134709-134709. [57]H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, 2008, "Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals," Chem. Mater., 20, 6434-6443. [58]L. Li, T.J. Daou, I. Texier, C. Tran Thi Kim, L. Nguyen Quang, and P. Reiss, 2009, "Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging," Chem. Mater., 21, 2422-2429. [59]A. C. Berends, W. Stam, 2018, "Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals" Chem. Mater., 30, 2400-2413. [60]Alice D. P. Leach, Janet E. Macdonald, 2016, "Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin," J. Phys. Chem. Lett., 572-583 [61]D. E. Nam, W. S. Song, H. Yang, and Facile, 2011, "air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields," J. Mater. Chem., 21, 18220-18226. [62]H. D. Nelson, D. R. Gamelin, 2018, "Valence-Band Electronic Structures of Cu+-Doped ZnS, Alloyed Cu–In–Zn–S, and Ternary CuInS2 Nanocrystals: A Unified Description of Photoluminescence across Compositions," J. Phys. Chem. C, 122, 31, 18124-18133. [63]P. Rao, W. Yao, 2015, "Highly stable CuInS2@ZnS:Al core@shell quantum dots: role of aluminium self-passivation," Chem. Comm., 51, 8757-8760. [64]J. H. Kim, E. P. Jang, 2016 "Enhanced fluorescent stability of copper indium sulfide quantum dots through incorporating aluminum into ZnS shell," J. Alloys and Compounds, 662, 173-178. [65]W. S. Song, H. Yang, 2012, "Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots," Chem. Mater., 24, 1961−1967. [66]B. Chen, H. Zhong, 2013, "Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes," Nanoscale, 5, 3514-3519. [67]S. H. Park, A. Hong, 2015, "Highly Bright Yellow-Green-Emitting CuInS2 Colloidal Quantum Dots with Core/Shell/Shell Architecture for White Light-Emitting Diodes," ACS Appl. Mater. Interfaces, 7, 6764-6771. [68]D. Cai, X. Yuan, 2017, "Al-doped ZnS shell as a surface shield for enhancing the stability of Cu:ZnInS/ZnS/ZnS:Al quantum dots and their application in light emittingdiodes," Mater. Res. Bull., 94, 241–246. [69]A. W. Norris, M. Bahadur, and M. Yoshitake, 2005, "Novel Silicone Materials for LED Packaging," Proc. of SPIE, 5941, 1-7. [70]M. Bahadur, A. W. Norris, A. Zarisfi, J. S. Alger, and C. C. Windiate, 2006, "Silicone Materials for LED Packaging," Proc. of SPIE , 6337, 1-7. [71]http://albright1.com/factors-in-selecting-medical-silicones-2/ [72]S. R. Chung, K. W. Wang, and M. W. Wang, 2013, "Hybrid YAG/CdSe Quantum Dots Phosphors for White Light-Emitting Diodes," J. Nanosci. Nanotechnol., 13, 1-6. [73]N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, A. Leitner, 2011," Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA," Phys. Status Solidi Appl. Mater. Sci., 208, 710-714. [74]C. B. Siao, K. W. Wang, H. S. Chen, Y. S. Su, and S. R. Chung, 2016, "Ultra high luminous efficacy of white ZnxCd1-xS quantum dots-based white light emitting diodes," Opt. Mater. Express, 749, 256194. [75]X. Yuan, X. Yuan, 2015, "Dual Emissive Manganese and Copper Co-Doped Zn-In-S Quantum Dots as a Single Color-Converter for High Color Rendering White-Light-Emitting Diodes," ACS Appl. Mater. Interfaces. 7, 16, 8659-8666. [76]H. S. Chen, K. W. Wang, S. S. Chen, and S. R. Chung, 2013, "ZnxCd1-xS quantum dots-based white light-emitting diodes," Opt. Lett., 38(12), 2080-2082. [77]B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. S. Bando, S. Y. Yang, and B. S. Zou, 2012, "Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance," Adv. Funct. Mater., 22, 2081-2088. [78]Y. K. Kim, S. H. Ahn, K. Chung, Y. S. Cho, C. J. Choi, 2012, "The Photoluminescence of CuInS2 Nanocrystals: Effect of Non-stoichiometry and Surface Modification," J. Mater. Chem., 22, 1516-1520. [79]J. Seo, S. Raut, M. Abdel-Fattah, Q. Rice, B. Tabibi, R. Rich, R. Fudala, I. Gryczynski, Z. Gryczynski, W. J. Kim, S. Jung, and R. Hyun, 2013, "Time-resolved and temperature-dependent photoluminescence of ternary and quaternary nanocrystals of CuInS2 with ZnS capping and cation exchange," J. Appl. Phys., 114, 094310. [80]K. T. Kuo, S. Y. Chen, B. M. Cheng, and C. C. Lin, 2008, "Synthesis and Characterization of Highly Luminescent CuInS2 and CuInS2/ZnS (Core/Shell) Nanocrystals," Thin Solid Films, 517, 1257-1261. [81]D. E. Nam, W. S. Song, and H. Yang, 2011, "Non-injection, One-Pot Synthesis of Cu-Deficient CuInS2/ZnS Core/Shell Quantum Dots and Their Fluorescent Properties,” J. Colloid Interface Sci., 361, 491-496. [82]Y. Chen, S. Li, L. Huang, and D. Pan, 2013, "Green and Facile Synthesis of Water-Soluble Cu-In-S/ZnS Core/Shell Quantum Dots," Inorg. Chem., 52, 7819-7821. [83]W. Guo, N. Chen, Y. Tu, C. Dong, B. Zhang, C. Hu, and J. Chang, 2013, "Synthesis of Zn-Cu-In-S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging," Theranostics, 3, 99-108. [84]X. S. Tang, W. L. Cheng, E. S. G. Choo, and J. M. Xue, 2011, "Synthesis of CuInS2/ZnS alloyed nanocubes with high luminescence," Chem. Commun., 47, 5217-5219. [85]W. J. Zhang and X. H. Zhong, 2011, "Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst," Inorg. Chem., 50, 4065-4072. [86]H. Zang, H. Li, 2017, "Thick-Shell CuInS2/ZnS Quantum Dots with Suppressed “Blinking”and Narrow Single-Particle Emission Line Widths," Nano Lett., 17, 1787−1795 [87]M. Zhu, Y. Li, 2019, "Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators," J. Colloid and Interface Sci., 534, 509-51 [88]X. Zhong, M. Han, 2003, "Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability" J. Am. Chem. Soc. 125, 28, 8589-8594 [89]J. E. Jaffe and A. Zunger, 1983, "Electronic Structure of The Ternary Chalcopyrite Semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2," Phys. Rev. B, 28, 5822-5847. [90]A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, 2012, "Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting, " Chem. Mater., 24, 1198-1204. [91]H. T. Kim, J. H. Kim, J. K. Lee, and Y. C. Kang, 2012, "Green light-emitting Lu3Al5O12: Ce phosphor powders prepared by spray pyrolysis," Mater. Res. Bull., 47, 1428-1431. [92]L. X. Wang, M. Yin, C. X. Guo, and W. P. Zhang, 2010, "Synthesis and luminescent properties of Ce3+ doped LuAG nano-sized powders by mixed solvo-thermal method," J. Rare Earths, 1, 16-21. [93]W. J. Yang and T. M. Chen, 2007, "Ce3+/Eu2+ codoped Ba2ZnS3: a blue radiation-converting phosphor for white light-emitting diodes," Appl. Phys. Lett., 171908, 1-4. [94]H. L. Li, X. J. Liu, and L. P. Huang, 2007, "Luminescent properties of LuAG: Ce phosphors with different Ce contents prepared by a sol-gel combustion method," Opt. Mater., 29, 1138-1142.
|