|
[1]Liang, X., Long, G., Fu, C., Pang, M., Xi, Y., Li, J., Han, W., Wei, G., Ji, Y. (2018). High performance all-solid-state flexible supercapacitor for wearable storage device application. Chemical Engineering Journal, 345, 186-195. [2]Han, T.-H., Kim, H., Kwon, S.-J., & Lee, T.-W. (2017). Graphene-based flexible electronic devices. Materials Science and Engineering: R: Reports, 118, 1-43. [3]Kwak, Y. H., Kim, W., Park, K. B., Kim, K., & Seo, S. (2017). Flexible heartbeat sensor for wearable device. Biosensors and Bioelectronics, 94, 250-255. [4]Scidà, A., Haque, S., Treossi, E., Robinson, A., Smerzi, S., Ravesi, S., Borini, S., Palermo, V. (2018). Application of graphene-based flexible antennas in consumer electronic devices. Materials Today. [5]González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206. [6]Li, X., & Wei, B. (2013). Supercapacitors based on nanostructured carbon. Nano Energy, 2(2), 159-173. [7]Drabek, P., & Streit, L. (2009). The energy storage system with supercapacitor for public transport. Paper presented at the Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE. [8]Wang, D., Geng, Z., Li, B., & Zhang, C. (2015). High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochimica Acta, 173, 377-384. [9]Shakir, I. (2014). High energy density based flexible electrochemical supercapacitors from layer-by-layer assembled multiwall carbon nanotubes and graphene. Electrochimica Acta, 129, 396-400. [10]Deng, L., Gu, Y., Gao, Y., Ma, Z., & Fan, G. (2017). Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors. Journal of Colloid and Interface Science, 494, 355-362. [11]Soin, N., Roy, S. S., Mitra, S. K., Thundat, T., & McLaughlin, J. A. (2012). Nanocrystalline ruthenium oxide dispersed Few Layered Graphene (FLG) nanoflakes as supercapacitor electrodes. Journal of Materials Chemistry, 22(30), 14944-14950. [12]Zhang, P., Yang, Y., Ma, Z., Wang, Y., Pan, Y., & Lu, C. (2016). A facile method to prepare electrode materials for pseudocapacitors with superior capacitive performance. Materials Letters, 164, 421-424. [13]Girard, H.-L., Wang, H., d’Entremont, A. L., & Pilon, L. (2015). Enhancing faradaic charge storage contribution in hybrid pseudocapacitors. Electrochimica Acta, 182, 639-651. [14]Yang, Q., Pang, S.-K., & Yung, K.-C. (2014). Study of PEDOT–PSS in Carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution. Journal of Electroanalytical Chemistry, 728, 140-147. [15]Karade, S. S., & Sankapal, B. R. (2016). Room temperature PEDOT: PSS encapsulated MWCNTs thin film for electrochemical supercapacitor. Journal of Electroanalytical Chemistry, 771, 80-86. [16]Shi, X., Zheng, S., Wu, Z.-S., & Bao, X. (2017). Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. Journal of Energy Chemistry. [17]Mao, X., Yang, W., He, X., Chen, Y., Zhao, Y., Zhou, Y., Yang, Y,. Xu, J. (2017). The preparation and characteristic of poly (3, 4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode. Materials Science and Engineering: B, 216, 16-22. [18]Azman, N. H. N., Lim, H. N., & Sulaiman, Y. (2016). Effect of electropolymerization potential on the preparation of PEDOT/graphene oxide hybrid material for supercapacitor application. Electrochimica Acta, 188, 785-792. [19]Zhou, H., & Zhi, X. (2017). Ternary composite electrodes based on poly (3, 4–ethylenedioxythiophene)/carbon nanotubes–carboxyl graphene for improved electrochemical capacitive performances. Synthetic Metals, 234, 139-144. [20]He, X., Yang, W., Mao, X., Xu, L., Zhou, Y., Chen, Y., Zhao, Y,. Yang, Y,. Xu, J. (2018). All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly (3, 4-ethylenedioxythiophene)(PEDOT) sponge electrodes. Journal of power sources, 376, 138-146. [21]Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., & Reynolds, J. R. (2000). Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials, 12(7), 481-494. [22]Xia, Y., Sun, K., & Ouyang, J. (2012). Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced Materials, 24(18), 2436-2440. [23]Mukherjee, S., Singh, R., Gopinathan, S., Murugan, S., Gawali, S., Saha, B., . . . Kumar, A. (2014). Solution-processed poly (3, 4-ethylenedioxythiophene) thin films as transparent conductors: Effect of p-toluenesulfonic acid in dimethyl sulfoxide. ACS applied materials & interfaces, 6(20), 17792-17803. [24]Singh, R., & Tripathi, C. C. (2018). Study of Graphene based Flexible Supercapacitors with Different Gel Electrolytes. Materials Today: Proceedings, 5(1), 943-949. [25]Ping, Z., XiaoJing, L., Anye, R., & Peng, G. (2016). Preparation of a novel porous gel electrolyte and its application in micro supercapacitor. Journal of Electroanalytical Chemistry, 782, 154-160. [26]Kovalska, E., & Kocabas, C. (2016). Organic electrolytes for graphene-based supercapacitor: liquid, gel or solid. Materials Today Communications, 7, 155-160. [27]Chen, Q., Li, X., Zang, X., Cao, Y., He, Y., Li, P., Wang, K,. Wei, J,. Wu, D,. Zhu, H. (2014). Effect of different gel electrolytes on graphene-based solid-state supercapacitors. RSC Advances, 4(68), 36253-36256. [28]Coskun, T., & Asmatulu, R. (2014). Enhancing the storage capacity of supercapacitors using pva/cnt nanocomposite electrolytes. Paper presented at the ASME 2014 International Mechanical Engineering Congress and Exposition. [29]Shieh, J.-Y., Wu, C.-H., Tsai, S.-Y., & Yu, H. H. (2016). Fabrication and characterization of a sandpaper-based flexible energy storage. Applied Surface Science, 364, 21-28. [30]Shieh, J.-Y., Zhang, S.-H., Wu, C.-H., & Yu, H. H. (2014). A facile method to prepare a high performance solid-state flexible paper-based supercapacitor. Applied Surface Science, 313, 704-710. [31]Javed, M. S., Dai, S., Wang, M., Guo, D., Chen, L., Wang, X., Hu, C,. Xi, Y. (2015). High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. Journal of power sources, 285, 63-69. [32]Zhao, Y., Zhang, Z., Ren, Y., Ran, W., Chen, X., Wu, J., & Gao, F. (2015). Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. Journal of power sources, 286, 1-9. [33]Byon, H. R., Lee, S. W., Chen, S., Hammond, P. T., & Shao-Horn, Y. (2011). Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon, 49(2), 457-467. [34]Zhang, L., & Shi, G. (2011). Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. The Journal of Physical Chemistry C, 115(34), 17206-17212. [35]Zhang, Y., Li, J., Kang, F., Gao, F., & Wang, X. (2012). Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. international journal of hydrogen energy, 37(1), 860-866. [36]An, K. H., Kim, W. S., Park, Y. S., Moon, J. M., Bae, D. J., Lim, S. C., Lee, Y. H,. Lee, Y. H. (2001). Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes. Advanced functional materials, 11(5), 387-392. [37]Shieh, J.-Y., Tsai, S.-Y., Li, B.-Y., & Yu, H. H. (2017). High-performance flexible supercapacitor based on porous array electrodes. Materials Chemistry and Physics, 195, 114-122. [38]Zhou, H., & Zhi, X. (2018). Surfactant-assisted potentiodynamically polymerized PEDOT fibers for significantly improved electrochemical capacitive properties. Materials Letters, 221, 309-312. [39]Kumar, N., Ginting, R. T., & Kang, J.-W. (2018). Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT: PSS/reduced-graphene oxide. Electrochimica Acta, 270, 37-47.
|