1.Boxman, R.L. and S. Goldsmith, Macroparticle contamination in cathodic arc coatings generation, transport and control. Surface and Coatings Technology, 1992. 52: p. 39-50.
2.Kopac, J., M. Sokovic, and S. Dolinsek, Tribology of coated tools in conventional and HSC machining. Materials Processing Technology, 2001. 118: p. 377-384.
3.Kelly, P.J. and R.D. Arnell, Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(3): p. 945-953.
4.Matthews and Allan, Plasma-based physical vapor deposition surface engineering processes. Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(5): p. 224-231.
5.蘇青森, 真空技術精華. 2003(五南圖書出版股份有限公司,臺北市).
6.Kuhn, M. and F. Richter, Characteristics in reactive arc evaporation. Surface and Coatings Technology, 1997. 89: p. 16-23.
7.J.E.Daalder, Cathode spots and vacuum arcs. Physica, 1981. 104: p. 91-106.
8.Anders, A., Growth and decay of macroparticles: A feasible approach to clean vacuum arc plasmas? Journal of Applied Physics, 1997. 82(8): p. 3679-3688.
9.Harris, S.G., et al., Reducing the macroparticle content of cathodic arc evaporated TiN coatings. Surface and Coatings Technology, 2004. 183(2-3): p. 283-294.
10.McClure, G.W., Plasma expansion as a cause of metal displacement in vacuum‐arc cathode spots. Journal of Applied Physics, 1974. 45(5): p. 2078-2084.
11.Utsumi, T. and J.H. English, Study of electrode products emitted by vacuum arcs in form of molten metal particles. Applied Physics, 1975. 46(1): p. 126-131.
12.Zhirkov, I., A. Petruhins, and J. Rosen, Effect of cathode composition and nitrogen pressure on macroparticle generation and type of arc discharge in a DC arc source with Ti–Al compound cathodes. Surface and Coatings Technology, 2015. 281: p. 20-26.
13.張詠傑, 陰極電弧系統之新型電磁控弧源設計與沉積氮化鋁鈦硬質薄膜機械性質研究. 2018, 國立虎尾科技大學 機械與電腦輔助工程系電漿與表面工程研究所碩士論文.14.KUPPUSAMI, P., A. DASGUPTA, and V.S. RAGHUNATHAN, A New Surface Treatment by Pulsed Plasma Nitriding for Chromium Plated Austenitic Stainless Steel. ISIJ International, 2002. 42(12): p. 1457-1460.
15.Ode´n, M., et al., Microstructure and mechanical behavior of arc-evaporated Cr–N coatings. Surface and Coatings Technology 1999. 114: p. 39-51.
16.Arias, D., A. Devia, and J. Velez, Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique. Surface and Coatings Technology, 2010. 204(18-19): p. 2999-3003.
17.Arias, D.F., Y.C. Arango, and A. Devia, Study of TiN and ZrN thin films grown by cathodic arc technique. Applied Surface Science, 2006. 253(4): p. 1683-1690.
18.Chen, H.-Y., S. Han, and H.C. Shih, Microstructures and properties changes induced by a metal vapor vacuum arc chromium interlayer in chromium nitride films. Materials Letters, 2004. 58(22-23): p. 2924-2926.
19.Elangovan, T., et al., Nanostructured CrN thin films prepared by reactive pulsed DC magnetron sputtering. Materials Science and Engineering: B, 2010. 167(1): p. 17-25.
20.Lousa, A., et al., Influence of deposition pressure on the structural mechanical and decorative properties of TiN thin films deposited by cathodic arc evaporation. Vacuum, 2007. 81(11-12): p. 1507-1510.
21.Wang, X.C., X.M. Chen, and B.H. Yang, Influence of nitrogen partial pressure on morphology, structure and transport properties of reactive sputtered polycrystalline TiN films. Solid State Sciences, 2012. 14(4): p. 435-439.
22.Kumar, D.D., et al., Film thickness effect and substrate dependent tribo-mechanical characteristics of titanium nitride films. Surfaces and Interfaces, 2018. 12: p. 78-85.
23.Chang, C.-L., et al., Influence of bias voltages on the structure and wear properties of TiSiN coating synthesized by cathodic arc plasma evaporation. Thin Solid Films, 2008. 516(16): p. 5324-5329.
24.Hörling, A., et al., Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools. Surface and Coatings Technology, 2005. 191(2-3): p. 384-392.
25.Komiyama, S., Y. Sutou, and J. Koike, Effect of Nitrogen Content on the Microstructure and Mechanical Properties of Ti-Mo-N Coating Films. Metallurgical and Materials Transactions A, 2010. 42(11): p. 3310-3315.
26.Luo, Q., Temperature dependent friction and wear of magnetron sputtered coating TiAlN/VN. Wear, 2011. 271(9-10): p. 2058-2066.
27.Martínez-Martínez, D., et al., Structural and microtribological studies of Ti–C–N based nanocomposite coatings prepared by reactive sputtering. Thin Solid Films, 2005. 472(1-2): p. 64-70.
28.Mayrhofer, P.H., et al., Self-organized nanostructures in the Ti–Al–N system. Applied Physics Letters, 2003. 83(10): p. 2049-2051.
29.Qiu, Y., et al., Self-lubricating CrAlN/VN multilayer coatings at room temperature. Applied Surface Science, 2013. 279: p. 189-196.
30.Wan, Q., et al., Effect of bilayer period on microstructure and mechanical properties of TiSiN/TiN coatings. Materialia, 2018. 3: p. 260-264.
31.Yang, Q., Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation. Surface and Coatings Technology, 2017. 332: p. 283-295.
32.Yang, Q., et al., Wear resistant TiMoN coatings deposited by magnetron sputtering. Wear, 2006. 261(2): p. 119-125.
33.汪大永、張銀祐、洪志穎, 陰極電弧沉積氮化鋁鈦氮化鉻奈米多層薄膜之開發與應用. 科學與工程技術期刊, 2005. 1(2): p. 1-6.
34.楊雲凱, 物理氣相沉積(PVD)介紹. 奈米通訊(22卷): p. 33-35.
35.Thompson, C.V., STRESS EVOLUTION DURING VOLMER-WEBER GROWTH OF THIN.
36.陳柏諺, Ti-Al-Si-N沉積在不銹鋼基材之高溫氧化性能研究. 2009, 明道大學 材料科學與工程研究所碩士論文.37.Tan, X., et al., Study on the effect of film formation process and deposition rate on the orientation of the CsI:Tl thin film. Crystal Growth, 2017. 476: p. 64-68.
38.Bull, S.J., D.G. Bhat, and M.H. Staia, Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modelling. Surface and Coatings Technology 2003. 163-164: p. 499-506.
39.Chang, Y.-Y., D.-Y. Wang, and C.-Y. Hung, Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process. Surface and Coatings Technology, 2005. 200(5-6): p. 1702-1708.
40.Tay, B.K., Z.W. Zhao, and D.H.C. Chua, Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Materials Science and Engineering: R: Reports, 2006. 52(1-3): p. 1-48.
41.Kumagai, M., et al., Macroparticles on titanium nitiride thin film prepared by cathodic-arc plasma-based ion implantation and deposition. Surface and Coatings Technology, 2003. 169-170: p. 401-404.
42.盧政良, 類鑽碳膜之高溫氧化特性研究. 2008, 明道大學 材料科學與工程研究所碩士論文.43.Nishibori, M., How to solve problems of films coated by ARC methods. Surface and Coatings Technology, 1992. 52: p. 229-233.
44.Koskinen, J., et al., Porosity of thin diamond-like carbon films deposited by an arc discharge method. Surface and Coatings Technology, 1993. 62: p. 356-360.
45.Heoa, S.J., et al., Effect of bias voltage on microstructure and phase evolution of Cr-Mo-N coatings by an arc bonded sputter system. Ceramics International, 2016. 42.
46.Takikawa, H., Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006. 35: p. 992-999.
47.賴岱暐, AISI 4340合金鋼電弧披覆Ti-Al-N薄膜之腐蝕與磨耗行為研究. 2011, 大同大學 材料工程研究所碩士論文.48.邱文通, 自潤性氮化釩鈦硬質薄膜之陰極電弧沉積製程設計與磨潤機制研究. 2017, 國立虎尾科技大學 機械與電腦輔助工程系電漿與表面工程研究所碩士論文.49.Ohring, M., The Materials Science of Thin Films. ACADEMIC PRESS, 1991.
50.HALLING, J., THE TRIBOLOGY OF SURFACE FILMS. Thin Solid Films, 1983. 108: p. 113-115.
51.Groche, P., G. Nitzsche, and A. Elsen, Adhesive wear in deep drawing of aluminum sheets. Manufacturing Technology, 2008. 57: p. 295-298.
52.Saini, M.S., et al., STUDY ON WEAR RESISTANCE OF Al-Si ALLOY USING A 3- BODY DRY ABRASIVE WEAR TESTING MACHINE. Engineering Research & Technology, 2016. 4(10): p. 1-6.
53.S., P., et al., Dry Sliding Wear Behaviour of Aluminium Alloy 6061-Redmud Metal Matrix Composites by Stir Casting Method. I J C T A, 2016. 6: p. 3797-3803.
54.Telle, R., Properties of Ceramics. Handbook of Ceramics Grinding and Polishing (Second Edition), 2015: p. 1-49.
55.Shi, Y. and X. Wu, Research on Oxidation Wear Behavior of a New Hot Forging Die Steel. Materials Engineering and Performance, 2017. 27(1): p. 176-185.
56.Erdemir, A., A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surface and Coatings Technology, 2005. 200(5-6): p. 1792-1796.
57.Franz, R. and C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review. Surface and Coatings Technology, 2013. 228: p. 1-13.
58.張弘, 奈米多層氮化鈦釩/氮化鈦矽硬質薄膜之機械性質與切削加工性能 2016, 國立虎尾科技大學 機械與電腦輔助工程系電漿與表面工程研究所碩士論文.59.Polcar, T., N.M.G. Parreira, and R. Novák, Friction and wear behaviour of CrN coating at temperatures up to 500 °C. Surface and Coatings Technology, 2007. 201(9-11): p. 5228-5235.
60.Pradhan, S.K., et al., Deposition of CrN coatings by PVD methods for mechanical application. Surface and Coatings Technology, 2005. 200(1-4): p. 141-145.
61.RainerCremer and DieterNeuschütz, A combinatorial approach to the optimization of metastable multicomponent hard coatings. Surface and Coatings Technology, 2001. 146-147: p. 229-236.
62.Elmkhah, H., et al., Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques. Journal of Alloys and Compounds, 2018. 735: p. 422-429.
63.CMitterer, et al., Application of hard coatings in aluminium die casting — soldering, erosion and thermal fatigue behaviour. Surface and Coatings Technology, 2000. 125: p. 233-239.
64.Chiba, Y., T. Omura, and H. Ichimura, Wear resistance of arc ion-plated chromium nitride coatings. Materials Research, 1992. 8(5): p. 1109-1115.
65.Chou, W.-J., G.-P. Yu, and J.-H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates. Surface and Coatings Technology 2002. 149: p. 7-13.
66.Chang, C.-L., et al., Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films. Surface and Coatings Technology, 2014. 259: p. 232-237.
67.Huitman, L., et al., Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti,Nb)N film heterostructures by transmission electron microscopy. Crystal Growth 1994. 135: p. 309-317.
68.府玠辰, 利用Al摻雜強化TiN薄膜對銅之擴散阻礙能力. 2004, 逢甲大學 材料科學與工程研究所碩士論文.
69.陳偉令, TiAlSiN奈米複合塗層之高溫氧化研究. 2009, 明道大學 材料科學與工程研究所碩士論文.
70.Chen, J., H. Li, and B.D. Beake, Load sensitivity in repetitive nano-impact testing of TiN and AlTiN coatings. Surface and Coatings Technology, 2016. 308: p. 289-297.
71.Chang, Y.-Y., S.-J. Yang, and D.-Y. Wang, Structural and mechanical properties of AlTiN/CrN coatings synthesized by a cathodic-arc deposition process. Surface and Coatings Technology, 2006. 201(7): p. 4209-4214.
72.Tian, C.X., et al., Influence of substrate rotation speed on the structure and mechanical properties of AlTiN/CrN coatings. Surface and Coatings Technology, 2013. 228: p. 228-232.
73.Endrino, J.L., et al., Oxidation post-treatment of hard AlTiN coating for machining of hardened steels. Surface and Coatings Technology, 2009. 204(3): p. 256-262.
74.Xu, Y.X., et al., Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios. Surface and Coatings Technology, 2016. 304: p. 512-518.
75.Vaz, F., et al., Thermal Oxidation of Ti AlN Coatings in Air the European Ceramic Society, 1997. 17(15–16): p. 1971-1977.
76.Chen, L., et al., Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition. Thin Solid Films, 2014. 556: p. 369-375.
77.Chen, L., et al., Thermal stability and oxidation resistance of Ti-Al-N coatings. Surf Coat Technol, 2012. 206-318(11-12): p. 2954-2960.
78.Du, M., et al., Microstructure and thermal stability of Ti1-xAlxN coatings deposited by reactive magnetron co-sputtering. Physics Procedia, 2011. 18: p. 222-226.
79.Choi, E.Y., et al., Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings. Journal of Materials Processing Technology, 2007. 187-188: p. 566-570.
80.Ho Kim, K., et al., Syntheses and mechanical properties of Cr–Mo–N coatings by a hybrid coating system. Surface and Coatings Technology, 2006. 201(7): p. 4068-4072.
81.26443, I.S.I., Fine ceramics (advanced ceramics, advanced technical ceramics)-Rockwell indentation test for evaluation of adhesion of ceramic coatings. 2008.
82.Larsson, P.-L., On the Invariance of Hardness at Vickers Indentation of Pre-Stressed Materials. Metals, 2017. 7(7).
83.Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 2011. 7(6): p. 1564-1583.
84.林麗娟, X光繞射原理及其應用. 工業材料, 1994. 86期: p. 100-109.
85.羅聖全, 科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM). 科學研習, 2013. No. 52-5: p. 1-5.
86.Jusman, Y., S.C. Ng, and N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. ScientificWorldJournal, 2014. 2014: p. 289817.
87.李曉琪, 穿透式電子顯微鏡 (TEM):電子波動性看奈米世. 科學研習, 2013. No. 52-5: p. 5-9.
88.林智仁 and 羅聖全, 場發射穿透式電子顯微鏡簡介. 工業材料雜誌, 2003. 201: p. 90-98.
89.林昆霖, 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子. 奈米通訊. 20卷 No.2: p. 34-38.
90.Benninghoven, A., Chemical Analysis of Inorganic and Organic Surfaces and Thin Films by Static Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS). the German Chemical Society, 1994. 33: p. 1023-1043.
91.Brummel, C., et al., A mass spectrometric solution to the address problem of combinatorial libraries. Science, 1994. 264(5157): p. 399-402.
92.何泉漢, 304L 不銹鋼和 316L 不銹鋼於模擬沸水式反應器起動狀態之水化學環境中的應力腐蝕龜裂行為研究. 2018, 國立清華大學 核子工程與科學研究所碩士論文.93.徐啟敏, 不鏽鋼 304 之微細孔鑽削特性與毛邊去除加工之相關研究. 2006, 國立臺北科技大學 製造科技研究所碩士論文.94.張啟邦, 陰極電弧沉積AlTiN/CrN與CrAlSiN薄膜之微結構、機械性質與高溫氧化行為研究. 2008, 明道大學 材料科學與工程研究所碩士論文.95.Yanfeng, W., et al., Effect of Multilayered Structure on Properties of Ti/TiN Coating. Rare Metal Materials and Engineering, 2017. 46(5): p. 1219-1224.
96.Holleck, H. and V. Schier, Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995. 76-77: p. 328-336.
97.Saha, R. and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002. 50: p. 23-38.
98.Weppelmann, E. and M.V. Swain, Investigation of the stresses and stress intensity factors responsible for fracture of thin protective films during ultra-micro indentation tests with spherical indenters. Thin Solid Films, 1996. 286: p. 111-121.
99.Schwaller, P., et al., Nanocomposite Hard Coatings: Deposition Issues and Validation of their Mechanical Properties. Advanced Engineering Materials, 2005. 7(5): p. 318-322.
100.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167.
101.Ibrahim, K., et al., Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: Experimental studies and finite element modeling. Alloys and Compounds, 2018. 750: p. 451-464.
102.Rahman, M.M., et al., Studies of annealing impact on the morphological, opto-dielectric and mechanical behaviors of molybdenum-doped CrN coatings. Thin Solid Films, 2019. 677: p. 119-129.
103.Ali, R., M. Sebastiani, and E. Bemporad, Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion. Materials & Design, 2015. 75: p. 47-56.
104.Olefjord, I., H.J. Mathied, and P. Marcu, Intercomparison of surface analysis of thin aluminium oxide films. SURFACE AND INTERFACE ANALYSIS, 1990. 15: p. 681-692.
105.陳俊孝, 多層氮化鋁鉻/氮化鈦釩硬質薄膜之機械性質與高溫氧化研究. 2016, 國立虎尾科技大學 機械與電腦輔助工程系電漿與表面工程研究所碩士論文.106.Ibrahim, K., et al., Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: Experimental studies and finite element modeling. Journal of Alloys and Compounds, 2018. 750: p. 451-464.
107.Lin, J., et al., A comparison of the oxidation behavior of CrN films deposited using continuous dc, pulsed dc and modulated pulsed power magnetron sputtering. Surface and Coatings Technology, 2012. 206(14): p. 3283-3290.