|
[1]W. Y. Zou, R. Socher, D. Cer and C. D. Manning, "Bilingual Word Embeddings for Phrase-Based Machine Translation", Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), vol.13, pp. 1393-1398, Oct. 2013. [2]K. Hui, A. Yates, K. Berberich and G. de Melo, "PACRR: A Position-Aware Neural IR Model for Relevance Matching", Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1049-1058,Sep. 2017. [3]M. Abadi, A. Agarwal, P. Barham, et al., "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems", arXiv: 1603.04467, Mar. 2016. [4]Y. Bengio, R. Ducharme, P. Vincent and C. Jauvin, "A Neural Probabilistic Language Model", Journal of Machine Learning Research, vol. 3, pp. 1137-1155, Feb. 2003. [5]T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient Estimation of Word Representations in Vector Space", arXiv: 1301.3781, Sep. 2013. [6]J. Pennington, R. Socher and C. D. Manning, "Glove: Global Vectors for Word Representation", Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), vol. 14, pp. 1532-1543, Oct. 2014. [7]M. Bansal, K. Gimpel and K. Livescu, "Tailoring Continuous Word Representations for Dependency Parsing", Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 809-815, June 2014. [8]J. Turian, L. Ratinov and Y. Bengio, "Word Representations: A Simple and General Method for Semi-Supervised Learning", Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384-394, July 2010. [9]R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa, "Natural Language Processing (Almost) from Scratch", Journal of Machine Learning Research, vol. 12, pp. 2493-2537, Mar. 2011. [10]R. Lebret and R. Collobert, "Word Emdeddings Through Hellinger PCA", Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 482-490, Apr. 2014. [11]O. Levy and Y. Goldberg, "Dependency-Based Word Embeddings", Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 302-308, June 2014. [12]M. Marcus, B. Santorini and M. A. Marcinkiewicz, "Building a Large Annotated Corpus of English: The Penn Treebank", Computational Linguistics, vol. 19, pp. 313-330, Oct. 1993. [13]E. F. T. K. Sang and F. D. Meulder, "Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition", Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003, vol. 4, pp. 142-147, 2003. [14]E. F. T. K. Sang and S. Buchholz, "Introduction to the Conll-2000 Shared Task: Chunking", Proceedings of the 2nd workshop on Learning language in logic and the 4th conference on Computational natural language learning, vol. 7, pp. 127-132, 2000. [15]S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory", Neural Computation, vol. 9, pp. 1735-1780, Nov. 1997. [16]S. Ji, H. Yun, P. Yanardag, S. Matsushima and S. V. N. Vishwanathan, "WordRank: Learning Word Embeddings via Robust Ranking", Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 658-668, Nov. 2016. [17]B. Gao, J. Bian and T. Y. Liu, " WordRep: A Benchmark for Research on Learning Word Representations", arXiv:1407.1640, July 2014. [18]O. Levy, Y. Goldberg and I. Dagan, "Improving Distributional Similarity with Lessons Learned from Word Embeddings", Transactions of the Association for Computational Linguistics, vol. 3, pp. 211-225, 2015. [19]S. Ghannay, Y. Est`eve, N. Camelin, C. Dutrey, F. Santiago and M. A. Decker, "Combining Continuous Word Representation and Prosodic Features for ASR Error Prediction", International Conference on Statistical Language and Speech Processing, pp. 84-95, Nov. 2015. [20]G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng, D. H. Tur, X. He, L. Heck, G. Tur and D. Yu, et al., "Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding", Audio, Speech, and Language Processing IEEE/ACM Transactions, vol. 23, pp. 530-539, Mar. 2015. [21]C. E. Shanon, "A Mathematical Theory of Communication", The Bell System Technical Journal, vol. 27, pp. 623-656, Oct. 1948. [22]P. D. Turney and P. Pantel, "From Frequency to Meaning: Vector Space Models of Semantics", Journal of Artificial Intelligence Research, vol. 37, pp. 141-188, Mar. 2010. [23]D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent Dirichlet Allocation", Journal of Machine Learning Research, vol. 3, no. 5, pp. 993-1022, Mar. 2003. [24]G. Salton and C. S. Yang, "On the Specification of Term Values in Automatic Indexing", Journal of Documentation, vol. 29, no. 4, pp. 351-372, June 1973. [25]D. M. Blei and J. D. Lafferty, "Correlated Topic Model", Advances in Neural Information Processing Systems (NIPS), vol. 18, pp. 147-154, Aug. 2006. [26]D. M. Blei and J. D. Lafferty, "Dynamic Topic Model", Proceedings of the 23rd International Conference on Machine Learning, pp. 113-120, June 2006. [27]T. Hofmann, "Probabilistic Latent Semantic Analysis", UAI’99: Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 289-296, July 1999. [28]T. Hofmann, "Unsupervised Learning by Probabilistic Latent Semantic Analysis", Machine Learning, vol. 42, pp. 177-196, 2001. [29]D. Mrva and P. C. Woodland, "Unsupervised Language Model Adaptation for Mandarin Broadcast Conversation Transcription", Proceedings of International Conference on Spoken Language Processing, pp. 1961-1964, 2004. [30]Y. C. Tam and T. Schultz, "Dynamic Language Model Adaptation Using Variational Bayes Inference", Proceedings of European Conference on Speech Communication and Technology, pp. 5-8, Jan. 2005. [31]Y. Ko, J. Seo, "Automatic Text Categorization by Unsupervised Learning", Proceedings of the 18th conference on Computational linguistics, vol. 1, pp. 453-459, 2000. [32]M. Caillet, J. F. Pessiot, M. R. Amini, P. Gallinari, "Unsupervised Learning with Term Clustering for Thematic Segmentation of Texts", Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval, pp. 648-657, Apr. 2004. [33]R. A. G. Hernández, R. Montiel, Y. Ledeneva, E. Rendón, A. Gelbukh, R. Cruz, "Text Summarization by Sentence Extraction Using Unsupervised Learning", Mexican International Conference on Artificial Intelligence MICAI 2008, Lecture Notes in Computer Science, vol. 5317, pp. 133-143, Oct. 2008. [34]T. Jo, "Text Categorization: Approaches", Text Categorization: Approaches. In: Text Mining. Studies in Big Data, vol. 45. Springer, pp. 101-127, 2019. [35]Y. Bengio, A. Courville, P. Vincent, "Representation Learning: A Review and New Perspectives", IEEE Trans. PAMI, special issue Learning Deep Architectures, vol. 35, pp. 1798-1828, Aug. 2013. [36]G. Hinton, S. Roweis, "Stochastic Neighbor Embedding", Proceedings of the Advances in Neural Information Processing System, pp. 857-864, 2002. [37]L. van der Matten, G. Hinton, "Visualizing High-Dimensional Data Using t-SNE", Journal of Machine Learning Research, vol. 9, pp. 2579-2605, Nov. 2008. [38]Matlab: Text Analytics Toolbox User's Guide, Mathworks, 2019. [39]Matlab: Text Analytics Toolbox Reference, Mathworks, 2019. [40]Y. Bengio, A. Courville and P. Vincent, "Representation Learning: A Review and New Perspectives", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 1798-1828, Aug. 2013. [41]J. Schmidhuber, "Deep Learning in Neural Networks: An Overview", Neural Networks, vol. 61, pp. 85-117, Jan. 2015. [42]Y. LeCun, Y. Bengio and G. Hinton, "Deep Learning", Nature, vol. 521, pp. 436-444, May. 2015. [43]P. Langley, "The Changing Science of Machine Learning", Machine Learning, vol. 82, pp. 275-279, Feb. 2011. [44] C. X. Zhai, Statistical Language Models for Information Retrieval, Morgan & Claypool Publishers, 2009. [45] Meng-Sung Wu, Hsuan-Jui Hsu, Jen-Tzung Chien, “Bayesian Topic Mixture Model for Information Retrieval [In Chinese]”, Proceedings of the 19th Conference on Computational Linguistics and Speech Processing, 2007. [46] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li and Liang Zhao, “Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey”, arXiv:1711.04305v2, 2018. [47] Nurzat Rakhmanberdieva, “Word Representation in Natural Language Processing Part II”, 2018. Website: https://towardsdatascience.com/word-representation-in-natural-language-processing-part-ii-1aee2094e08a
|