|
[1] 雲林縣政府(2013)。雲林縣政府全球資訊網。檢自https://www.yunlin.gov.tw/content/index.asp?m=1&m1=3&m2=14 [2] Papachristou E Velali E, Pantazaki A, Choli-Papadopoulou T, Argyrou N, Tsourouktsoglou T, Lialiaris S, Constantinidis A, Lykidis D, Lialiaris TS, Besis A, Voutsa D, Samara C. (2016). Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter. Environmental Pollution, 218, 1350-1362. [3] Chung-Te Lee Ming-Tung Chuang, Hui-Chun Hsu. (2018). Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method. Journal of Environmental Management, 227, 10-22. [4] 燕子老師(2015)。地理教室。檢自http://lovegeo.blogspot.com/2015/09/l3_26.html [5] 行政院環境保護署(2019)。空氣品質檢測網。檢自https://taqm.epa.gov.tw/taqm/tw/AqiOverMonthlyReport.aspx [6] Fang-Yi Cheng Chia-Hua Hsu. (2016). Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmospheric Environment, 144, 397-408. [7] Mohammad Hassan Ehrampoush. Mohsen Ansari. (2019). Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environmental Research, 170, 141-150. [8] Shao-Hu Song Jing-Hui Ma, Meng Guo, Ji Zhou, Fang Liu, Li Peng, Zhi-RenFu. (2017). Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions. Biochemical and Biophysical Research Communications, 493, 1122-1128. [9] Chia-Hua Lin Yi-Chun Chen, Shih-Chun Candice Lung, Ku-Fan Chen, Wen-Cheng Vincent Wang, Cheng-Tai Chou, Chia-Hsiang Lai. (2019). Environmental concentration of spray paint particulate matters causes pulmonary dysfunction in human normal bronchial epithelial BEAS-2B cell. Process Safety and Environmental Protection., 126, 250-258. [10]Stefania Cocco Giuliano Polichetti, Alessandra Spinali, Valentina Trimarco, AlfredoNunziata. (2009). Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology, 261, 1-8. [11] Oliviero Olivieri Nicola Martinelli, Domenico Girelli. (2013). Air particulate matter and cardiovascular disease: A narrative review. European Journal of Internal Medicine, 24, 295-302. [12] Government Queensland.(2017)。Particles。檢自https://www.qld.gov.au/environment/pollution/monitoring/air/air-pollution/pollutants/particles [13] Linjing Deng Qihong Deng, Yufeng Miao, Xilong Guo, Yuguo Lic. (2019). Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research, 169, 237-245. [14] LIU Yameng TAO Yan, MI Shengquan, GUO Yongtao. (2013). Atmospheric pollution characteristics of fine particles and their effects on human health. Acta Scientiae Circumstantiae, 34, 592-597. [15] Ehsanul Kabir Ki-Hyun Kim, Shamin Kabir. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74. [16] Rui Chen William K. Boyes, Chunying Chen, Robert A. Yokel. (2012). The neurotoxic potential of engineered nanomaterials. NeuroToxicology, 33, 902-910. [17] Deborah Traversi. (2011). Mutagenicity of PM2.5. Encyclopedia of Environmental Health, 880-887. [18] Dan Gao Shaolong Feng, Fen Liao, Furong Zhou, Xinming Wang. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 67-74. [19] Julia C. Fussell. Frank J. Kelly. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504-526. [20] World Health Organization(2018)。The top 10 causes of death.。檢自https://www.who.int/zh/news-room/fact-sheets/detail/the-top-10-causes-of-death [21] Laura Kerepesi Binbin Lu, Lynne Wisse, Keith Hitchman, Quanxin Ryan Meng. (2007). Cytotoxicity and Gene Expression Profiles in Cell Cultures Exposed to Whole Smoke from Three Types of Cigarettes. Toxicological Sciences., 98, 469-478. [22] Françoise Saint-Georges Imane Abbas, Sylvain Billet, Anthony Verdin, Philippe Mulliez, Pirouz Shirali, Guillaume Garçon. (2009). Air pollution particulate matter (PM2.5)-induced gene expression of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in an in vitro coculture lung model. Toxicology in Vitro., 23, 37-46. [23] Fontana Rebecca Decker, Wisconsin.(2018)。Global initiative for chronic obstructive lung disease.。檢自https://goldcopd.org/wp-content/uploads/2018/02/WMS-GOLD-2018-Feb-Final-to-print-v2.pdf [24] RN. Deborah Leader(2019)。Causes and Risk Factors of COPD。檢自https://www.verywellhealth.com/copd-causes-risk-factors-914865 [25] 衛生福利部國民間康署(2018)。慢性呼吸道疾病(氣喘、慢性阻塞肺疾病)。檢自https://www.hpa.gov.tw/Pages/List.aspx?nodeid=215 [26] 衛生福利部國民健康署、臺北醫學大學考科藍臺灣研究中心、台灣胸腔暨重症加護醫學會、臺灣實證醫學會(2017)。台灣肺阻塞臨床照護指引。台北市:衛生福利部國民健康署。 [27] M. Emmet O’Brien Tomás P. Carroll, Laura T. Fee, Kevin Molloy, Blair Murray, Seshma Ramsawak, Oisín McElvaney, Catherine O’Connor, Noel G. McElvaney. (2014). Alpha-1 Antitrypsin Deficiency - A Missed Opportunity in COPD? IntechOpen., 33-67. [28] Simon C. Ling MB ChB Sarah K. Brode MD, Kenneth R. Chapman MD MSc. (2012). Alpha-1 antitrypsin deficiency: a commonly overlooked cause of lung disease. CMAJ, 182, 1365-1371. [29] Emer P. Reeves Cormac McCarthy , Noel G. McElvaney. (2015). The Role of Neutrophils in Alpha-1 Antitrypsin Deficiency. ATSJournals, 13, S297–S304. [30] Yang Ting Liu Yuxiang, Ye Yanping, Li Xiaobin, Chen Jin, Ye Huan, He Yaohong, Li Ning, Xi Xiuming. (2006). Researches on the Co-relations between Serum α1-antitrypsin Level and Airway Inflammation, and Pulmonary Function in COPD Patients During the Stationary Phases. Journal of Capital University of Medical Sciences, 27, 35-37. [31] Sam Alam Zhenjun Li, Jicun Wang, Caroline S. Sandstrom, Sabina Janciauskiene, and Ravi Mahadeva. (2009). Oxidized α1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am J Physiol Lung Cell Mol Physiol., 297, L388-L400. [32] Shinichi Mashiba Masashi Ueda, Kazuo Uchida. (2002). Evaluation of oxidized alpha-1-antitrypsin in blood as an oxidative stress marker using anti-oxidative α1-AT monoclonal antibody. Clinica Chimica Acta, 317, 125-131. [33] Mónica Amor Amparo Escribano, Sara Pastor, Silvia Castillo, Francisco Sanz, Pilar Codoñer-Franch, Francisco Dasí. (2015). Decreased glutathione and low catalase activity contribute to oxidative stress in children with α-1 antitrypsin deficiency. Thorax, 70, 82-83. [34] Barbara P. Yawn. (2019). Differential Assessment and Management of Asthma vs Chronic Obstructive Pulmonary Disease. Medscape J Med., 11, 20. [35] Stephan F.van Eeden. Ryohei Miyata. (2011 ). The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicology and Applied Pharmacology, 257, 209-226. [36]Chao Cao Yan-ping Wu, Yin-fang Wu, Miao Li, Tian-wen Lai, Chen Zhu, Yong Wang, Song-min Ying, Zhi-hua Chen, Hua-hao Shen, Wen Li. (2017). Activating transcription factor 3 represses cigarette smoke-induced IL6 and IL8 expression via suppressing NF-κB activation. Toxicology Letters, 270, 17-24. [37] Ziad Mallat. Alain Tedgui. (2006). Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiological Reviews, 86, 515-581. [38] Xiaowei Chen Zhonghui Zhu, Jingping Sun, Qiuyue Li, Ximeng Lian, Siling Li, Yan Wang, Lin Tian. (2018). Inhibition of nuclear thioredoxin aggregation attenuates PM2.5-induced NF-κB activation and pro-inflammatory responses. Free Radical Biology and Medicine, 130, 206-214. [39] Fábio S. Lira Bruna S. A. Silva, Dionei Ramos, Juliana S. Uzeloto, Fabrício Eduardo Rossi, Ana Paula C.F.Freire, Rebeca N. Silva, Iara B. Trevisan, Luis Alberto Gobbo, Ercy M. C. Ramos. (2018). Severity of COPD and its relationship with IL-10. Cytokine, 106, 95-100. [40] CHEN Chongjun SUN Zhelin , YANG Lingyan ,ZOU Qiang ,SUO Guangli ,HUANG Junyi ,LIN Jiahua. (2016). Impact of organic and water⁃soluble PM2.5 on BEAS⁃2B cell damage and expression of COPD biomarkers. Acta Scientiae Circumstantiae, 36, 4262-4271. [41] S.H Korn R.C.J Langen, E.F.M Wouters. (2003). ROS in the local and systemic pathogenesis of COPD. Free Radical Biology and Medicine, 35, 226-235. [42] C. Alves A.J.Reis, S. Furtado, J. Ferreira, M. Drummond, C. Robalo-Cordeirog. (2018). COPD exacerbations: management and hospital discharge. Pulmonology, 24, 345-350. [43] Green D Mutlu GM, Bellmeyer A, Baker CM, Burgess Z, Rajamannan N, Christman JW, Foiles N, Kamp DW, Ghio AJ, Chandel NS, Dean DA, Sznajder JI, Budinger GR. (2007). Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest., 117, 2952-2961. [44] Joanna Kozłowska Ewa Grela, Agnieszka Grabowiecka. (2018). Current methodology of MTT assay in bacteria – A review. Acta Histochemica, 120. [45] Alfonso Blázquez-Castro Juan C. Stockert, Magdalena Cañete, Richard W. Horobin, Ángeles Villanueva. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 114, 785-796. [46] Miriam Corraliza-Gomez Raquel Pascua-Maestro, Sergio Diez-Hermano, Candido Perez-Segurado, María D. Ganfornina, Diego Sanchez. (2018). The MTT-formazan assay: Complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochemica, 120, 179-186. [47] Alexandra V. Kareyeva Vera G. Grivennikova, Andrei D.Vinogradov. (2018). Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Redox Biology, 17, 192-199. [48] Jarosław Walczak Monika Oparka, Dominika Malinska, Lisanne M.P.E .van Oppen, Joanna Szczepanowska, Werner J.H. Koopman, Mariusz R. Wieckowski. (2016). Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods, 109, 3-11. [49] Frederic Truffer Sher Ahmed, Marta Giazzon, Mélanie Favre, Barbara Rothen-Ruthishauser, Martial Geiser, Martha Liley. (2013). Transepithelial Electrical Resistance on Cell Cultures for in vitro Toxicity Testing of Water Samples. [50] Charles R. Keese Chun-Min Lo, Ivar Giaever. (1999). Cell–Substrate Contact: Another Factor May Influence Transepithelial Electrical Resistance of Cell Layers Cultured on Permeable Filters. Experimental Cell Research, 250, 576-580. [51] Lai CH Yan J, Lung SC, Chen C, Wang WC, Huang PI, Lin CH. (2017). Industrial PM2.5 cause pulmonary adverse effect through RhoA/ROCK pathway. Science of The Total Environment, 599-600, 1658-1666. [52] Robert Sturm. (2015). Nanotubes in the human respiratory tract – Deposition modeling. Zeitschrift für Medizinische Physik., 25, 135-145. [53] Danni Lyu Qiuli Fu, Lifang Zhang, Zhenwei Qin, Qiaomei Tang, Houfa Yin, Xiaoming Lou, Zhijian Chen, Ke Yao. (2017). Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environmental Pollution, 227, 314-322. [54] Umit Murat Sahiner MD Esra Birben PhD, Cansin Sackesen MD, Serpil Erzurum MD, Omer Kalayc iMD. (2012). Oxidative Stress and Antioxidant Defense. World Allergy Organization Journal, 5, 9-19. [55] Javier Pereda Salvador Pérez, Luis Sabater, and Juan Sastrea. (2015). Redox signaling in acute pancreatitis. Redox Biology, 5, 1-14. [56] C.J. Rhodes M. Valko, J. Moncol, M.Izakovic, M. Mazur. (2016). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions., 160, 1-40. [57] 李婉若(2008)。Heme Oxygenase-1的皮膚保護作用。行政院國家科學委員會計畫告(編號:NSC97-2314-B038-023-MY3 ),未出版 [58] Nikki J. Holbrook. Jennifer L. Martindale. (2002). Cellular response to oxidative stress: Signaling for suicide and survival. Journal of Cellular Physiology, 192, 1-15. [59] Tobias Bielow Sebastian Weis, Ines Sommerer, Juan Iovanna, Cédric Malicet, Joachim Mössner, Albrecht Hoffmeister. (2015). P8 deficiency increases cellular ROS and induces HO-1. Archives of Biochemistry and Biophysics, 565, 89-94. [60] Narazaki M Tanaka T, Masuda K, Kishimoto T. (2016). Regulation of IL-6 in Immunity and Diseases. Adv Exp Med Biol., 947, 79-88. [61] Mario G. Ortiz-Martínez Rosa I. Rodríguez-Cotto, Evasomary Rivera-Ramírez, Vinicius L. Mateus, Beatriz S. Amaral, Braulio D. Jiménez-Vélez, Adriana Gioda. (2014). Particle pollution in Rio de Janeiro, Brazil: Increase and decrease of pro-inflammatory cytokines IL-6 and IL-8 in human lung cells. Environmental Pollution., 194, 112-120. [62] Marco Baggiolini. (1993). Chemotactic and Inflammatory Cytokines — CXC and CC Proteins. Adv Exp Med Biol., 351, 1-11. [63] Victor Torres Ernesto Alfaro-Moreno, Javier Miranda, Leticia Martínez, Claudia García-Cuellar, Tim S. Nawrot, Bart Vanaudenaerde, Peter Hoet, Pavel Ramírez-López, Irma Rosas, Benoit Nemery, Alvaro Román Osornio-Vargas. (2009). Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling. Environmental Research., 109, 528-535. [64] Magne Refsnes Johan Øvrevik, Ellen Namork, Rune Becher, Dagny Sandnes, Per E. Schwarze, Marit Låga. (2006). Mechanisms of silica-induced IL-8 release from A549 cells: Initial kinase-activation does not require EGFR activation or particle uptake. Toxicology., 227, 105-116. [65] H Carp A Janoff, DK Lee, RT Drew. (1979). Cigarette smoke inhalation decreases alpha 1-antitrypsin activity in rat lung. Science., 206, 1313-1314. [66] ABetanzos P Nava L González-Mariscal, B.E Jaramillo. (2003). Tight junction proteins. Progress in Biophysics and Molecular Biology., 81, 1-14. [67] Oliver H. Wittekindt. (2016). Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch., 469, 135-147. [68] Russell L. Delude PhD. Mitchell P. Fink MD. (2005). Epithelial Barrier Dysfunction: A Unifying Theme to Explain the Pathogenesis of Multiple Organ Dysfunction at the Cellular Level. Critical Care Clinics, 21, 177-196. [69] Zhiqiang Guo Renwu Zhao, Ruxin Zhang, Congrui Deng, Jian Xu, Weiyang Dong, Zhicong Hong, Hongzhi Yu, Huiru Situ, Chunhui Liu, Guoshun Zhuang. (2017). Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation. Journal of Applied Toxicology., 38, 678-687. [70] Nikica Mise Andrea C. Schamberger, Jie Jia, Emmanuelle Genoyer, Ali Ö. Yildirim, Silke Meiners, Oliver Eickelberg. (2013). Cigarette Smoke–Induced Disruption of Bronchial Epithelial Tight Junctions Is Prevented by Transforming Growth Factor-β. ATSJournals, 50, 1040-1052. [71] Declan Bostock Andrew Higham, George Booth, Josiah V Dungwa, Dave Singh. (2018). The effect of electronic cigarette and tobacco smoke exposure on COPD bronchial epithelial cell inflammatory responses. Int J Chron Obstruct Pulmon Dis., 13, 989-1000.
|