Black, K. (2011). Business statistics: for contemporary decision making. John Wiley & Sons.
Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc..
B. Liu, W. Hsu, L.F. Mun, and H.Y. Yan (1999).“Finding Interesting Patterns Using User Expectations,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No.6.
Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and data Engineering, Vol. 8, No. 6, 866-883.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A., International Business Machines Corporation (San Jose, California), & International Technical Support Organization (San Jose, California). (1997). Discovering data mining: from concept to implementation (p. 27). New Jersey: Prentice Hall PTR.
Ghani, R., & Simmons, H. (2004). Predicting the end-price of online auctions. In Proceedings of the International Workshop on Data Mining and Adaptive Modelling Methods for Economics and Management (pp. 1-11).
H.-J. Chiang, C.-C. Tseng and C.-C. Torng (2013). “A retrospective analysis of prognostic indicators in dental implant therapy using the C5.0 decision tree algorithm”, Journal of Dental Sciences, Vol. 8, No. 3, pp. 248-255.
J. MacQueen (1967). “Some methods for classification and analysis of multivariate 58 observations”, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, No 14, pp. 281-297.
Moloud Abdar, Mariam Zomorodi-Moghadam, Resul Das, I-HsienTing (2017). “Performance analysis of classification algorithms on early detection of liver disease”, Expert Systems with Applications, Vol. 67, Pages 239-251.
M. Ghodousi, A. A. Alesheikh and B. Saeidian (2016). “Analyzing public participant data to evaluate citizen satisfaction and to prioritize their needs via K-means.”, FCM and ICA.Vol. 55, pp. 70-81.
P. Cabena, P. Hadjiniian, R. Stadler, J. Verhees and A. Zanasi (1997).“Discovering Data Mining From Concept to Implementation,” Prentice-Hall Inc.
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, Vol. 1, No. 1, pp. 81-106.
S. Zahra, M. A. Ghazanfar, A. Khalid, M. A. Azam, U. Naeem and A. PrugeiBennett (2015). “Novel centroid selection approaches for KMeans-clustering based recommender systems”, Information Sciences, Vol. 320, pp. 156-189.
Sheikh, K. (2003). Manufacturing resource planning (MRP II): with introduction to ERP, SCM and CRM. McGraw-Hill Professional Publishing.
Siknun and Sitanggang (2016) “Web-based Classification Application for Forest Fire Data Using the Shiny Framework and the C5.0 Algorithm“, Procedia Environmental Sciences, Vol. 33, pp. 332-339.
Taylor, B. W., Bector, C. R., Bhatt, S. K., & Rosenbloom, E. S. (2015). Introduction to management science. Prentice Hall.
程信賢. (2002). 行動電話消費者購買行為及其市場區隔之研究─ 以南部地區為例. 成功大學企業管理學系碩士在職專班學位論文, 1-127.行動電話顧客流失行為探討吳坤泉. (2002). 行動電話顧客流失行為探討. 成功大學高階管理碩士在職專班 (EMBA) 學位論文, 1-51.許哲瑋. (2002). 資料挖掘與統計方法應用於資料庫行銷之實證研究─ 以美妝保養品業為例. 台北大學企業管理研究所碩士論文。范國恩. (2004). 行動電話服務市場之轉換用戶市場區隔研究-以台北市地區為例行動電話服務市場之轉換用戶市場區隔研究-以台北市地區為例
高子婷(2006). 以集群分析探討結構性改變-以台灣加權股價指數為例。逢甲大學國際貿易所碩士論文。羅巧芳, 吳信宏, 張恩啓, & 鄭易英. (2008). 應用資料探勘於戶外活動用品專賣店之顧客忠誠及價值分析. 品質學報, 15(4), 293-303.
馮秀卿(2008). 以群集分析技術探討同縣市醫學中心婦產科病患就醫特性—以台中市為例。東海大學工業工程與經營資訊研究所碩士論文。張皇裕(2008). 運用地理資訊精進房貸風險預測。輔仁大學資訊工程研究所碩士論文.涂永營.(2009). 應用資料探勘於顧客價值與產品關聯分析之研究-以水療業為例。國立高雄應用科技大學資訊管理系碩士在職專班碩士論文。廖述賢與溫志皓,(2009)。資料採礦與商業智慧。台北:雙葉書廊
林良泰, & 陳乃萁. (2010). K-means 集群分析法應用於號誌定時時制時段劃分之研究. 運輸學刊, 22(3), 347-368.
歐宗殷(2010). 資料探勘為基礎之零售業銷售預測模式-以連鎖超商鮮食商品為例。國立清華大學工業工程與工程管理研究所碩士論文。黃秉文. (2011). 運用資料採礦的技術探討金字塔客戶之流失模式-以某量販店為例
林佳青(2015). 以客服中心通話行為預測分析顧客流失率-以A公司為例。元智大學資訊管理學系碩士班碩士論文。詹于葳(2016). 應用資料探勘建立分類反應模型於電信資費與商品組合分析之研究。國立中央大學企業管理學系碩士論文。