1.張武修, “HUMN International Collaborative Project on Micronucleus Frequencies in Human Populations 人群微細胞核頻率國際合作計劃-[ 臺灣計劃 ] “, http://www.ym.edu.tw/humn/.
2.E. Bengtsson, “Computerized Cell Image Analysis:Past, Present, and Future”, Scandinavian conference on Image Analysis (SCIA 2003), Springer-Verlag, Lecture Notes in Computer Science 2749, pp. 395-407.
3.K.A. Marghani, S.S. Dlay, and B.S. Sharif Univ. of Newcastle upon Tyne (United Kingdom) Andrew J. Sims Freeman Hospital (United Kingdom), “Automated morphological analysis approach for classifying colorectal microscopic images.” 2003 SPIE.
4. A. Lozano, M.E. Gonsebatt, A.E. Buenfil, and J. Márquez, “Image Analysis of Cell Micronuclei Micrographs to Evaluate Their Use as Indicators of Cell Damage”, AIP Conference Proceedings, September 15, 2003, Vol 682(1) pp. 211-216.
5.M. Fenech, W.P. Chang, M. Kirsch-Volders, N. Holland, S. Bonassi, and E. Zeiger, “HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures”, Genetic Toxicology and Environment Mutagenesis, Elsevier Science, 2002, pp.65-75.
6.S.G. Luis and M.M. Regina, “Micronuclei and chromatid buds are the result of related genotoxic events”, Departamento de Toxicologia Genetica y Ambiental, Instituto de Investigaciones Biomedicas, UNAM, Distrito Federal, Mexico.
7.T. Markiewicz, L. Moszczynski, and S. Osowski, “Myelogenous leukemia cell image preprocessing for feature generation”, V Int. Workshop - Computational Methods in Electrical Engineering, Jaznowiec, 2003, pp.70-73.
8.J. Iivarinen and A. Visa, “An Adaptive Texture and Shape Based Defect Classification”, Proceedings of the 14th International Conference on Pattern Recognition-Volume 1 - Volume 1, August 16 - 20, 1998, Brisbane, Australia .
9.T. Markiewicz and L. Moszczynski, “Analysis of Features for Blood Cell Recognition”, VI International Workshop - Computational Problems of Electrical Engineering, Zakopane 2004.
10.F. Albregtsen, H. Schulerud, and L. Yang, “Texture Classification of Mouse Liver Cell Nuclei Using Invariant Moments of Consistent Regions.” CAIP 1995: pp.496-502.
11.P. Berger, J. Lavallee, R. Rouiller, F. Laurent, R. Marthan, and JM. Tunon-De-Lara, “Assessment of bronchial inflammation using an automated cell recognition system based on colour analysis.” Eur Resp J 1999;14:1394–1402.
12.F. Ortiz, F. Torres, E. De Juan, and N. Cuenca, “Colour Mathematical Morphology For Neural Image Analysis”, Real-Time Imaging, 8 (2002) pp.455-465.
13.Q. Zheng, B.K. Milthorpe, and A. S. Jones, “Direct Neural Network Application for Automated Cell Recognition”, Cytometry Part A 57A:1-9, 2004. © 2003 Wiley-Liss, Inc.
14.N. Otsu, “A Threshold Selection Method From Gray Level Histograms”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-9 (1979) 62-66.
15.J.R. Weaver and J.L. Au, “Application of automatic thresholding in image analysis scoring of cells in human solid tumors labeled for proliferation markers.” Cytometry; 29(2):128-35, 1997.
16.張祐育,”子宮內膜異位症之組織影像特徵參數分析”,南台科技大學,電機工程所碩士論文,2004年。17.M.K. Hu, “Visual pattern recognition by moment invariants”, Information Theory, IEEE Transactions on, Volume: 8, Issue: 2, Feb 1962.
18.J. Iivarinen and A. Visa, “ Shape recognition of irregular objects” , In D. P. Casasent (Ed.), Intelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision, and Materials Handling, Proc. SPIE 2904, 1996, pp. 25-32.
19.C. Sun, “Symmetry detection using gradient information”, Pattern Recognition Letters, ELSEVIER,3 April 1995
20.繆紹綱編著,數位影像處理活用-Matlab,全華科技圖書股份有限公司,1999年。
21.J. Kilian, “Simple Image Analysis by Moments, version 0.2”, OpenCV library documentation, 2001.
22.D.F. Specht, “Probabilistic Neural Networks”, Neural Networks, vol. 3, no.1 Jan 1990, pp. 109-118.
23.羅華強編著,類神經網路-MATLAB的應用,清蔚科技出版,2001年。
24.Weka, http://www.cs.waikato.ac.nz/~ml/weka/
25.OpenCV News Group, http://groups.yahoo.com/group/OpenCV/