|
[1] Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., & Gruner, G. (2009). Printable thin film supercapacitors using single-walled carbon nanotubes. Nano letters, 9(5), 1872-1876. [2]Rogers, J. A., & Huang, Y. (2009). A curvy, stretchy future for electronics. Proceedings of the National Academy of Sciences, 106(27), 10875-10876. [3]Nishide, H., & Oyaizu, K. (2008). Toward flexible batteries. Science, 319(5864), 737-738. [4] Lu, X., & Xia, Y. (2006). Electronic materials: buckling down for flexible electronics. Nature Nanotechnology, 1(3), 163. [5] Becker, Howard I, 1957, "Low voltage electrolytic capacitor." U.S. Patent No. 2,800,616. 23。 [6] Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. [7] O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737. [8] Tan, Y. B., & Lee, J. M. (2013). Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1(47), 14814-14843. [9] 日本Peccell公司 http://www.peccell.com/products/PECF/ [10]Das, P., Sengupta, D., Mondal, B., & Mukherjee, K. (2015). A review on metallic ion and non-metal doped titania and zinc oxide photo-anodes for dye sensitized solar cells. Reviews in Advanced Sciences and Engineering, 4(4), 271-290. [11] Liu, X., Fang, J., Liu, Y., & Lin, T. (2016). Progress in nanostructured photoanodes for dye-sensitized solar cells. Frontiers of materials science, 10(3), 225-237. [12] Chen, X., & Mao, S. S.(2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(7), 2891-2959. [13] Shen, L., Bao, N., Zheng, Y., Gupta, A., An, T., & Yanagisawa, K. (2008). Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. The Journal of Physical Chemistry C, 112(24), 8809-8818. [14] Serikov, T. M., Ibrayev, N. K., Smagulov, Z. K., & Kuterbekov, К. А. (2017, January). Influence of annealing on optical and photovoltaic properties of nanostructured TiO2 films. In IOP Conference Series: Materials Science and Engineering (Vol. 168, No. 1, p. 012054). IOP Publishing. [15] Bianchi, C. L., Pirola, C., Stucchi, M., Sacchi, B., Cerrato, G., Morandi, S., ... & Capucci, V. (2016). A new frontier of photocatalysis employing micro-sized TiO2: air/water pollution abatement and self-cleaning/antibacterial applications. [16] Landmann, M., Rauls, E., & Schmidt, W. G. (2012). The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of physics: condensed matter, 24(19), 195503. [17] Dambournet, D., Belharouak, I., & Amine, K. (2009). Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chemistry of materials, 22(3), 1173-1179. [18] Anh, L. T., Rai, A. K., Thi, T. V., Gim, J., Kim, S., Shin, E. C., ... & Kim, J. (2013). Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. Journal of Power Sources, 243, 891-898. [19] Ludin, N. A., Mahmoud, A. A. A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., & Karim, N. S. A. (2014). Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 31, 386-396. [20] Kong, F. T., Dai, S. Y., & Wang, K. J. (2007). Review of recent progress in dye-sensitized solar cells. Advances in OptoElectronics, 2007. [21] Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., & Luo, G. (2015). Electrolytes in dye-sensitized solar cells. Chemical reviews, 115(5), 2136-2173. [22] Serikov TM, Ibrayev NK, Smagulov ZK, Kuterbekov К. Influence of annealing on optical and photovoltaic properties of nanostructured TiO2 films. IOP Conference Series: Materials Science and Engineering 2017; 168(1):1–6. [23] Zhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 16(38), 20382-20386. [24] Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review. Renewable and Sustainable Energy Reviews, 60, 356-376. [25] Kim, S. H., & Park, C. W. (2013). Novel application of platinum ink for counter electrode preparation in dye sensitized solar cells. Bulletin of the Korean Chemical Society, 34(3), 831-836. [26] Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848-5860. [27] Yum, J. H., Baranoff, E., Wenger, S., Nazeeruddin, M. K., & Grätzel, M. (2011). Panchromatic engineering for dye-sensitized solar cells. Energy & Environmental Science, 4(3), 842-857. [28] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663. [29] Soedergren, S., Hagfeldt, A., Olsson, J., & Lindquist, S. E. (1994). Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. The Journal of Physical Chemistry, 98(21), 5552-5556. [30] Solbrand, A., Lindström, H., Rensmo, H., Hagfeldt, A., Lindquist, S. E., & Södergren, S. (1997). Electron transport in the nanostructured TiO2− electrolyte system studied with time-resolved photocurrents. The Journal of Physical Chemistry B, 101(14), 2514-2518. [31] Nelson, J., & Chandler, R. E. (2004). Random walk models of charge transfer and transport in dye sensitized systems. Coordination Chemistry Reviews, 248(13-14), 1181-1194. [32] Beley, M., Chartier, P., & Ern, V. (1981). Dye sensitization of ceramic semiconducting electrodes for photoelectrochemical conversion. Revue de Physique Appliquée, 16(1), 5-10. [33] Vangari, M., Pryor, T., & Jiang, L. (2012). Supercapacitors: review of materials and fabrication methods. Journal of Energy Engineering, 139(2), 72-79. [34] Jänes, A., Kurig, H., & Lust, E. (2007). Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon, 45(6), 1226-1233. [35] Yan, J., Wei, T., Qiao, W., Fan, Z., Zhang, L., Li, T., & Zhao, Q. (2010). A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry communications, 12(10), 1279-1282. [36] Liu, T., Pell, W. G., & Conway, B. E. (1997). Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochimica Acta, 42(23-24), 3541-3552. [37] Chen, S. M., Ramachandran, R., Mani, V., & Saraswathi, R. (2014). Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int. J. Electrochem. Sci, 9(8), 4072-4085. [38] Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. [39] González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206. [40] Callahan, P. G., Stinville, J. C., Yao, E. R., Echlin, M. P., Titus, M. S., De Graef, M., ... & Pollock, T. M. (2018). Transmission scanning electron microscopy: Defect observations and image simulations. Ultramicroscopy, 186, 49-61. [41]Al-Alwani, M. A., Mohamad, A. B., Ludin, N. A., Kadhum, A. A. H., & Sopian, K. (2016). Dye-sensitised solar cells: development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renewable and Sustainable Energy Reviews, 65, 183-213. [42] Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical supercapacitors for energy storage and conversion. Handbook of Clean Energy Systems, 1-25.
|