參考文獻
[1]丁一賢、陳牧言,2006,資料探勘,滄海書局,台中。
[2]于宗先,1972,經濟預測,大中國出版社。
[3]方世杰,1988,市場預測方法一百種,書泉出版社,台北。
[4]方世榮、張文賢,2014,統計學導論,第七版,華泰文化,台北。
[5]林芳毅,2015,Hadoop結合R之資料探勘–以TH 公司產品銷售預測為例,國立高雄應用科技大學工業工程與管理系碩士班,碩士論文。[6]洪彥群,2014,利用資料探勘技術建立商用複合機銷售預測模型,國立中央大學資訊管理學系在職專班,碩士論文。[7]翁慈宗,2009,「資料探勘的發展與挑戰」,科學發展期刊,442期,頁34~37,台北。
[8]袁梅宇,2014。王者歸來:WEKA機器學習與大數據聖經。佳魁資訊,台北。
[9]張云濤、龔玲,2007。資料探勘原理與技術,五南圖書出版社,台北。
[10]張崇賢,2010,應用資料探勘於流通業智慧型行動電話銷售預測,大同大學資訊經營所,碩士論文。[11]陳功興,2006,便利商店鮮食商品銷售預測模式之研究-探討類神經網路與平假日移動平均法的比較,國立高雄第一科技大學行銷與流通管理所,碩士論文。[12]陳登貴,2005,資料探勘於汽車零組件業銷售預測之研究,樹德科技大學,碩士論文。[13]曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,2006,資料探勘Data Mining,旗標出版社。
[14]葉怡成,2003,類神經網路模式應用與實作,儒林圖書有限公司,台北。
[15]葉怡成,2009,類神經網路-模式應用與實作,第9版,儒林圖書公司,台北。
[16]廖淑玲,1998,「成為WTO會員國後對我國自行車業的影響」,台灣經濟研究月刊,21期,頁43~48,台北。
[17]歐宗殷,2010,資料探勘為基礎之零售業銷售預測模式以連鎖超商鮮食商品為例,國立清華大學工業工程與工程管理研究所,博士論文。[18]蔡岳志,2017,運用時間序列演算法建構產品銷售預測模式之研究-以HiNet虛擬點數卡為例,醒吾科技大學資訊科技應用系,碩士論文。[19]Brown, R.G., 1963, Smoothing, Forecasting and Prediction of Discrete Time Series, Dover Publications Inc, New York, USA.
[20]Chapelle, O., Vapnik, V., Bousquet, O., &Mukherjee, S, 2002, “Choosing multiple parameters for support vector machines”, Machine Learning, 46, pp.131–159.
[21]Chen, K.Y. &Wang, C.H., 2007, “Support vector regression with genetic algorithms in forecasting tourism demand”, Tourism Management, 28, pp.215–226.
[22]Chung, H. M., &Gray, P. , 1999, “Special Section: Data Mining”, Journal of Management Information Systems, 16, pp.11–16.
[23]Cios, K.J., Pedrycz, W., Swiniarski, R.W., &Kurgan, L., 2010, Data Mining: A Knowledge Discovery Approach: Springer-Verlag Inc, New York, USA.
[24]Darlington, R.B., A Regression Approach to Time Series Analysis. available at http://node101.psych.cornell.edu/Darlington/series/series0.htm retrieved May 05, 2018.
[25]Fayyad, U., Piatetsky-Shapiro, G., &Smyth, P., 1996, “From data mining to knowledge discovery in databases”, AI Magazine, 17, pp.37–54.
[26]Fayyad, U.M.,Piatetsky-Shapiro, G, &Smyth,P., 1996, Advances in Knowledge Discovery and Data Mining,American Association for Artificial Intelligence Menlo Park, California, USA.
[27]Frank, E., Hall, M. A., & Ian H., 2016, The WEKA Workbench, Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, Morgan Kaufmann Publisheres, Burlington, USA.
[28]Frawley, W.J.,&G Piatetsky-Shapiro., 1992, “Knowledge Discovery in Databases: An overview”,AI Magazine, 13(3), pp.57–70.
[29]Han, J., & Sun, Y., 2012, Mining Heterogeneous Information Networks: Principles and Methodologies, Morgan & Claypool Publisheres, California, USA.
[30]Janert, P. K., 2010, Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists, O'Reilly Media Inc, California, USA.
[31]Kagami, N., Iwamoto, R., &Tani, T., 2005, “Application of datamining method (ID3) to data analysis for ultra deep hydrodesulfurization of straight-run light gas oil—determination of effective factor of the feed properties to reaction rate of HDS”, Fuel, 84, Issues 2–3, pp.279–285.
[32]Rasmussen, C. E., 2003, Gaussian processes in Machine Learning, Advanced Lectures on Machine Learning, pp.63–71, Springer, Germany.
[33]Rasmussen, C. E., &Williams, C. K. I., 2006, “Gaussian processes for machine learning”, International Journal of Neural Systems, 14, pp.69–106.
[34]Still, R.R., Edward, C.E.,&Norman, G.A.P., 1988, Sales Managementl:Decisions, Strategies, and Cases,Pearson Education, New York, USA.
[35]WEKA Website:https://www.cs.waikato.ac.nz/ml/weka/