|
[1] M. Muller, G. Fischer, B. Bitnar, S. Steckemetz et al.,“ Loss analysis of 22% efficient industrial PERC solar cells,” Energy Procedia, 124, pp. 131-137, 2017. [2] A. Herguth, R. Horbelt, S. Wilking, R. Job, G. Hahn,“ Comparison of BO regeneration dynamics in PERC and Al-BSF solar cells,” Energy Procedia, 77, pp. 75-82, 2015. [3] B. Veith, F. Werner, D. Zielke, R. Brendel, J. Schmidt,“ Comparison of the thermal stability of single Al2O3 layers and Al2O3/SiNx stacks for the surface passiviation of silicon,” Energy Procedia, 8, pp. 307–312, 2011. [4] J. Kim, Y. Hwang, J. Kim, J. Lim, E. Lee,“ Investigation of rear side selective laser ablation and damage etching process for industrial PERC solar cells,” Energy Procedia, 55, pp. 791 -796, 2014. [5] Y. Hwang, C. S Park, J. Kim, J. Kim, J. Y. Lim, H. Choi, J. Jo, E. Lee,“ Effect of laser damage etching on i-PERC solar cells,” Renewable Energy, 79, pp. 131-134, 2015. [6] H. Huang, J. Lv, Y. Bao, R. Xuan, S. Sun, S. Sneck, S. Li, C. Modanese, H. Savin, A. Wang, J. Zhao,“ 20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%,” Solar Energy Materials & Solar Cells, 161, pp. 14-30, 2017. [7] H. Hannebauer, T. Falcon, J. Cunnusamy, T. Dullweber,“ Single print metal stencils for high-efficiency PERC solar cells,” Energy Procedia, 98, pp. 40-45, 2016. [8] B. Hallam, A. Uruena, R. Russell, M. Aleman, M. Abbott, C. Dang, S. Wenham, L. Tous, J. Poortmans,“ Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter,” Solar Energy Materials & Solar Cells, 134, pp. 89-98, 2015. [9] J. Kim, J. Kim, J. Y. Lim, Y. Hwang, J. Cho, H. Choi, E. Lee,“ Laser ablation of aluminum oxide and silicon nitride rear-side passivation for i-PERC cell,” Renewable Energy, 79, pp. 135-139, 2015. [10] G. Fischer, M. Muller, S. Steckemetz, R. Kohler, F. Lottspeich, F. Wolny, C. Koch, T. Roth, M. Kipping, H. Neuhaus, E. Schneiderlochner,“ Model based continuous improvement of industrial p-type PERC technology beyond 21% efficiency,” Energy Procedia, 77, pp. 515-519, 2015. [11] M. Bivour, B. Macco, J. Temmler, E. Kessels, M. Hermale,“ Atomic layer deposited molybdenum oxide for the hole-selective contact of silicon solar cells,” Energy Procedia, 92, pp. 443-449, 2016. [12] L. Gerling, G. Masmitja, C. Voz, P. Ortega, J. Puigdollers, R. Alcubilla,“ Back junction n-type silicon heterojunction solar cells with V2O5 hole-selective contact,” Energy Procedia, 92, pp. 633-637, 2016. [13] L. G. Gerling, S. Mahato, C. Voz, R. Alcubilla, J. Puigdollers,“ Characterization of transition metal oxide/silicon heterojunctions for solar cell applications,” Applied Sciences, 5, pp. 695-705, 2015. [14] C. Battaglia, S. M. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, Ali. Javey, “ Silicon heterojunction solar cell with passivated hole selective MoOx contact,” Applied Physics Letters, 104, pp. 113902, 2014. [15] H. Nasser, G. Kokbudak, H. Mehmood, R. Turan,“ Dependence of n-cSi/MoOx heterojunction performance on cSi doping concentration,” Energy Procedia, 124, pp. 418-424, 2017. [16] P. Ravindra, R. Mukherjee, S. Avasthi,“ Hole-selective electron-blocking copper oxide contact for silicon solar cells,” IEEE Journal of Photovoltaics, 7, pp. 1278-1283, 2017. [17] J. Tong, Y. Wan, J. Cui, S. Lim, A. Lennon,“ Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells,” Applied Surface Science, 423,pp. 139-146, 2017. [18] C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, A. Javey,“ Hole selective MoOx contact for silicon solar cells,” Nano letters, 14, pp. 967-971, 2014. [19] L. G. Gerlinga, C. Voza, R. Alcubillaa, J. Puigdollersa,“ Origin of passivation in hole-selective transition metal oxides for crystalline silicon heterojunction solar cells,” Journal of Materials Research, pp. 260-268, 2017. [20] L. G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers,“ Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Solar Energy Materials & Solar Cells, 145, pp. 109-115, 2016. [21] M. Bivour, J. Temmler, H. Steinkemper, M. Hermle,“ Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells,” Solar Energy Materials & Solar Cells, 142, pp. 34-41, 2015.
[22] J. Shia, L. Shena, Y. liua, J. Yua, J. Liu, L. Zhanga, Y. Liua, J. Biana, Z. Liua, F. Menga,“ MoOx modified ITO/a-Si: H(p) contact for silicon heterojunction solar cell application,” Materials Research Bulletin, 97, pp. 176-181, 2017. [23] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, “ Structural and gas-sensing properties of V2O5-MoO3 thin films for H2 detection,” Sensors and Actuators B, 77, pp. 346-351, 2001. [24] K. Galatsis, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh,“ Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing,” Sensors and Actuators B, 77, pp. 478-483, 2001. [25] V. Ponnarasan, A. Krishnan,“Effect of V2O5 coating on NO2 sensing properties of WO3 thin films,” Advanced Studies in Theoretical Physics, 8, pp. 251-258, 2014. [26] X. He, J. Li, X. Gao,“Structural and gas-sensing properties of V2O5-MoO3 thin films for H2 detection,” Sensors and Actuators B, 108, pp. 207-210, 2005. [27] P. Schulz, S. R. Cowan, Z. L. Guan, A. Garcia, D. C. Olson ,A. Kahn,“ NiOX /MoO3 bi-layers as efficient hole extraction contacts in organic solar cells,” Advanced Functional Materials, 24, pp. 701-706, 2014. [28] J. Geissbuhler, J. Werner, S. Martin de Nicolas, L. Barraud, A. H. Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, C. Ballif,“ Gas sensing properties of thermally evaporated lamellar MoO3,” Applied Physics Letters, 107, pp. 081601, 2015. [29] P. Y. Ho, J. Y. Sun, S. H. Kao, C. Y. Kao, S. H. Lin, S. Lan, W. H. Tseng, C. I. Wu, C. F. Lin,“ The effects of MoO3 treatment on inverted PBDTTT-C:PC71BM solar cells,” Solar Energy Materials & Solar Cells, 119, pp. 235-240, 2013. [30] K. Kanai, K. Koizumi, S. Ouchi, Y. Tsukamoto, K. Sakanoue, Y. Ouchi, K. Seki,“ Electronic structure of anode interface with molybdenum oxide buffer layer,” Organic Electronics, 11, pp. 188-194, 2010. [31] B. Dasgupta, W. P. Goh, Z. E. Ooi, L. M. Wong, C. Y. Jiang, Y. Ren, E. S. Tok, J. Pan, J. Zhang, S. Y. Chiam,“ Enhanced extraction rates through gap states of molybdenum oxide anode buffer,” The Journal of Physical Chemistry C, 117,pp. 9206-9211, 2012.
|