一、中文部分:
[1] 高文慶,「螞蟻演算法於有限資源專案排程最佳化之研究」,元智大學工業工程與管理研究所碩士論文 (2004)。
[2] 趙淑妙譯,自私的基因(Dawkins, R., 1976),初版,台北:天下遠見出版股份有限公司,頁 287-306 (1995)。
[3] 蔡登茂,「有限資源專案排程問題之文獻回顧研究」,正修學報,第九期,57~74頁 (1996)。
[4] 蔡登茂,「有限資源多專案排程啟發法之績效評估及其應用」,技術學刊,第十一卷,第四期,第547-562頁 (1996)。[5] 錢明淦,「遺傳演算法應用於具有多種資源組態及資源限制專案計劃排程問題之研究」,元智大學工業工程研究所碩士論文 (1999)。
二、英文部分:
[6] Areibi, A., Moussa, M. and Abdullah, H. (2001), “A comparison of genetic/memetic algorithms and other heuristic search techniques,” in International Conference on Artificial Intellegence, Las Vegas, Nevada, June 2001, 660-666
[7] Blazewicz, J., Lenstra, J. K., and Rinooy Kan, A. H. G.. (1983), “Scheduling subject to resource constraints: Classification and complexity,” Discrete Applied Mathematics 5, 11-24.
[8] Boctor, F., F. (1990) “Some efficient multi-heuristic procedures for resource-constrained project scheduling problems,” European Journal of Operational Research, 49: 3-13.
[9] Bouleimen, K. and Lecocq, H. (2003), “A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version,” European Journal of Operational Research, 149, 268-281.
[10] Brucker, P., Drexl, A., Mohring, R., Neumann, K. and Pesch, E. (1999), “Resource-constrained project scheduling: Notation, classification, models, and methods,” European Journal of Operational Research, 112, 3-41.
[11] Brucker, P. and Knust, S. (2000), “A linear programming and constraint propagation-based lower bound for the RCPSP,” European Journal of Operational Research, 127, 355-362.
[12] Brucker, P. and Knust, S. (2003), “Lower bounds for resource-constrained project scheduling problems,” European Journal of Operational Research, 149, 302-313.
[13] Dorndorf, U., Pesch, E. and Phan-Huy, T. (2000), “A branch and bound algorithm for the resource-constrained project scheduling problem,” Mathematical Methods of Operations Researrch, 52, 413-439.
[14] Freszar, K. and Hindi, K. S. (2004), “Solving the resource-constrained project scheduling problem by a variable neighbourhood search,” European Journal of Operational Research, 155, 402-413.
[15] Hartmann, S. (1998), “A competitive genetic algorithm for resource-constrained project scheduling,” Naval Research Logistics, 45, 733-750.
[16] Hartmann, S. (2002), “A self-adapting genetic algorithm for project scheduling under resource constraints,” Naval Research Logistics, 49, 433-448.
[17] Hartmann, S. and Kolisch, R. (2000), “Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem,” European Journal of Operational Research, 127, 394-407.
[18]Herroelen, W., De. Reyck, B., and Demeulemeester, E. (1998), “Resource-constrained project scheduling: A survey of recent developments,” Computers and Operations Research, 25 (4), 279-302.
[19] Klein, R. (2000), “Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects,” European Journal of Operational Research, 127, 619-638.
[20] Kolisch, R. (1996), “Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation,” European Journal of Operational Research, 90, 320-333.
[21] Kolisch, R. and Sprecher, A. (1996), “PSPLIB – A project scheduling problem library,” European Journal of Operational Research, 96, 205-216.
[22] Kolisch, R., Sprecher, A. and Drexl, A. (1995), “Characterization and generation of a general class of resource-constrained project scheduling problems,” Management Science, 41, 693-1703.
[23] Li, K. Y. and Willis R. J. (1992), “An iterative scheduling technique for resource-constrained project scheduling,” European Journal of Operational Research, 56, 370-379.
[24] Merkle, D., Middendorf, M. and Schmeck, H. (2002), “Ant colony optimization for resource-constrained project scheduling,” IEEE Transactions on Evolutionary Computation, 6, 333-346.
[25] Merz, R. (2002), “A comparison of memetic recombination operators for the traveling salesman problem,” in GECCO 2002: proceedings of the Genetic and Evolutionary Computation Conference, (Langdon, W. B. et al., eds.), Morgan Kaufman, 472-479.
[26] Merz, R. and Freisleben, B. (2000), “Fitness landscape analysis and memetic algorithms for the quadratic assignment problem,” IEEE Transactions on Evolutionary Computation, 4 (4), 337-352.
[27] , R. H., Schulz, A. Z., Stork, F., and Uetz, M. (2003), “Solving project scheduling problems by minimum cut computations,” Management Science, 49 (3), 330-350.
[28] Moscato, P. (1989), “On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms,” Tech. Rep., Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, California, USA, Report.826.
[29] Nonobe, K. and Ibaraki, T. (2001), “Formulation and tabu search algorithm for the resource constrained project scheduling problem,” Essays and Surveys in Metaheuristics, (Ribero, C.C. and Hansen, P. eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 557-588.
[30] Sprecher, A., Kolisch, R. and Drexl, A. (1995), “Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem,” European Journal of Operational Research, 80, 94-102.
[31] Tormos, P. and Lova, A. (2001), “A competitive heuristic solution technique for resource-constrained project scheduling,” Annals of Operations Research, 102, 65-81.
[32] Valls, V., Ballestin, F. and Quintanilla, S. (2003), “Resource-constrained project scheduling: A critical activity reordering heuristic,” European Journal of Operational Research, 149, 282-301.
[33] Valls, V., Ballestin, F. and Quintanilla, S. (2005), “Justification and RCPSP: A technique that pays”, European Journal of Operational Research, 165, 375-386.
[34] Zou, P., Zhou, Z., Chen, G.-L. and Yao, X. (2004), “A novel memetic algorithm with random multi-local-search: a case study of TSP”, in CECCO 2004: Proeedings of the 2004 Congress on Evolutionary Computation, IEEE Press, Piscataway, NJ, USA, 19-23 June 2004, Portland, Oregon, USA, 2335-2340.