[1]S. Sobri, S. Koohi-Kamali, N.A. Rahim, Solar photovoltaic generation forecasting methods: A review, Energy Conversion and Management 156 (2018) 459-497.
[2]張克勤、李聰盛、鍾光民,Subsidy Programs on Diffusion of Solar Water Heaters in Taiwan,Renewable Energy國際會議發表論文2010,103-118。
[3]N. Selvakumar, H.C. Barshilia, Review of physical vapor deposited (PVD) Spectrally Selective Coatings for Mid and High-temperature Solar Thermal Applications, Solar Energy Materials & Solar Cells 98 (2012) 1–23.
[4]S.W. Hogg, G.B. Smith, The unusual and useful optical properties of electrodeposited chrome-black films, Journal of physics (1977) 1863-1870.
[5]G. Zajac, G.B. Smith, Refinement of solar absorbing black chrome microstructure and its relationship to optical degradation mechanisms, Journal of Applied physics 51(1980) 5544-5554.
[6]Q. C. Zhang, D. R. Mills, Very low‐emittance solar selective surfaces using new film structures, Journal of applied physics 72(1992) 3013-3021.
[7]S.K. Rawal, A.K. Chawla, R. Jayaganthan, R. Chandra, Structural, Wettability and Optical Investigation of Titanium Oxynitride Coatings: Effect of Various Sputtering Parameters, Journal of Materials Science & Technology 28 (2012) 512-523.
[8]L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, H. Cao, Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications, Solar Energy Materials & Solar Cells 114 (2013) 186–191.
[9]R. Franz, M. Lechthaler, C. Polzer, C. Mitterer, Oxidation behaviour and tribological properties of arc-evaporated ZrAlN hard coatings, Surface & Coatings Technology 206 (2012) 2337–2345.
[10]Y.T. Chae, J. Kim, H. Park, B. Shin, Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells, Applied Energy 129 (2014) 217–227.
[11]M. Pagliaro, R. Ciriminna, G. Palmisano, BIPV: merging the photovoltaic with the construction industry, Res. Appl (2010) 18:61–72.
[12]Y. Wu, W. Zheng, L Lin, Y. Qu, F. Lai, Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure, Solar Energy Materials & Solar Cells 115(2013) 145–150.
[13]C. Zou, W. Xie, L. Shao, Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications, Solar Energy Materials & Solar Cells 153 (2016) 9–17.
[14]Q.C. Zhang, Y. Yin, D.R. Mills, High efficiency Mo–Al2O3 cermet selective sur-
faces for high-temperature application, Sol. Energy Mater. Sol.Cells 40(1) (1996) 43–53.
[15]Z.Y. Nuru, C.J. Arendse, R. Nemutudi, O. Nemraoui, M. Maaza, Pt–Al2O3 nanocoatings for high temperature concentrated solar thermal power applications, Phys. B: Condens.Matter 407 (2012) 1634–1637.
[16]Q.C. Zhang, Optimizing Analysis of W-AlN Crèmet Solar Absorbing Coatings, Journal of Physics D: Applied Physics 34 (2001) 3113-3120.
[17]N. Selvakumar, H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Solar Energy Materials & Solar Cells 98 (2012) 1–23.
[18]T. Eisenhammer, A. Haugeneder, A. Mahr, High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe, Solar Energy Materials & Solar Cells 54 (1998) 379-386.
[19]M.E. Rincón, J.D. Molina, M. Sánchez, C. Arancibia, E. García, Optical characterization of tandem absorber/reflector systems based on titanium oxide–carbon coatings, Solar Energy Materials & Solar Cells 91 (2007) 1421-1425.
[20]H.C. Barshilia, N. Selvakumar, K.S. Rajam, A. Biswas, Spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar applications, Solar Engery Mater. Solar Cells 92 (2008) 495 - 504.
[21]C.E. Kennedy, Review of Mid-to High-Temperature Solar Selective Absorber Materials, July 2002.
[22]Q.C. Zhang, Stainless-steel /AlN cermet selective surfaces deposited by direct current magnetron sputtering technology, Sol. Energy Mater. Sol Cells, 52 (1998) 95-106.
[23]M. Nishimura, T. Ishiguro, Solar Light Absorption Property of Nano-Structured Silver Layer and Application to Photo-Thermal Energy Conversion Coating, Mater. Trans 43 (2002) 2073-2079.
[24]J. Vince, A. Surca-Vuk, U.O. Krasovec, B. Orel, M. Kohl, M. Heck, Solar absorber coatings based on CoCuMnOx spinels prepared via the sol–gel process: structural and optical properties, Solar Engery Mater. Solar Cells 79 (2003) 313-330.
[25]Y.M. Yang, Z.Q. Li, F.Y. Jiao, Y.F. Liu, Z.Q. Li, H. Su, Z. Yang, Chinese journal of luminescence (2012) 1000-7032.
[26]M. Koltun, G. Gukman, A. Gavrilina, Stable selective coating black nickel for solar collector surfaces, solar Engery Mater Solar Cells 33 (1994) 41.
[27]M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001) 1897-1899.
[28]K.D. Masterson, Spectrally selective surfaces for high-temperature photothermal solar energy conversion, Optics in Solar Energy Utilization I 147 (1976).
[29]曾慶綸,AlN太陽能選擇性吸收膜之研究,國立中央大學光電科學與工程學系碩士論文,2015。[30]C. Zou, L. Huang, J. Wang, S. Xue, Effects of antireflection layers on the optical and thermal stability properties of a spectrally selective CrAlN–CrAlON based tandem absorber, Solar Energy Materials & Solar Cells 137 (2015) 243–252.
[31]T. Polcar, A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings, Surf. Coat. Technol 206(2011) 1244–1251.
[32]Y. Lv, L. Ji, X. Liu, H. Li, H. Zhou, J. Chen, The structure and properties of CrAlN films deposited by mid-frequency unbalanced magnetron sputtering at different substrate bias duty cycles, Surf. Coat. Technol. 206(2012) 3961–3969.
[33]K.D. Bouzakis, N. Michailidis, S. Gerardis, G. Katirtzoglou, E. Lili, M. Pappa, M. Brizuela, A. Garcia-Luis, R. Cremer, Correlation of the impact resistance of variously doped CrAlN PVD coatings with their cutting performance in milling aerospace alloys, Surf. Coat. Technol. 203(2008) 781–785.
[34]M. Zhua, F. Li, G. Zhou, X. Jin, X. Wang, L. Wang, F. Song, Microstructures and electrical properties of nanostructured Cr2O3 thin films deposited by dual-target reactive high-power impulse magnetron sputtering, Vacuum 164(2019) 293–299.
[35]A.B. Khelifa, A. Soum-Glaude, S. Khamlich, H. Glenat, M. Balghouthi, A.A. Guizani, M. Maaza, W. Dimassi, Optical simulation, characterization and thermal stability of Cr2O3/Cr/Cr2O3 multilayer solar selective absorber coatings, Journal of Alloys and Compounds 783 (2019) 533-544.
[36]M. Serenyi, T. Lohner, G. Safran, J. Szívos, Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films, Vacuum 128 (2016) 213-218.
[37]S. Prasanna, G. Mohan Rao, S. Jayakumar, M.D. Kannan, V. Ganesan, Dielectric properties of DC reactive magnetron sputtered Al2O3 thin films, Thin Solid Films 520 (2012) 2689–2694.
[38]A. Hosokawa, K. Shimamura, T. Ueda, Cutting characteristics of pvd-coated tools deposited by unbalanced magnetron sputtering method, CIRP annals – manufacturing technology 61 (2012) 95–98.
[39]K. Bobzina, T. Brögelmanna, A. Gillner, N.C. Kruppe, C. He, M. Naderi, Laser-structured high performance PVD coatings, Surface and Coatings Technology 352(2018) 302-312.
[40]C. Engstrom, T. Berlind, J. Birch, L. Hultman, I.P. Ivanov, S.R. Kirkpatrick, S. Rohde, Design, plasma studies, and ion assisted thin film growth in an unbalanced dual target magnetron sputtering system with a solenoid coil, Vacuum 56 (2000) 107-113.
[41]M. Ohring, Material Science of Thin Films, 2nd Ed, Academic Press, London (2002) 95-96, 357-399, 497-504, 716-719, 766-776.
[42]張永宏,氮化鋁薄膜於太陽能選擇性吸收膜之研究,龍華科技大學機械工程研究所碩士論文,2005。[43]林彥佑,Cr/Ta2N/Si(100)之界面反應研究,國立台灣科技大學,機械工程系碩士論文,2005。[44]D. Jiles, Introduction properties of materials, Advanced Materials 7(4) (1994) 423 – 424.
[45]B. E. Sernelious, K. F. Berggren, Z. C. Jin, I. Hambreg, C.G. Granqvist, Band - gap tailoring of ZnO by means of heavy Al doping, Physical Review B. 37(17) (1998) 10244-10248.
[46]R.W.G. Hunt, Measuring Colour, New York (1991).
[47]李正中,薄膜光學與鍍膜技術,藝軒出版社,台北,2015。
[48]L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971.
[49]M. Kawate, A. Kimura, T. Suzuki, Microhardness and lattice parameter of Cr1−xAlxN films, Journal of Vacuum Science & Technology A 20 (2002) 569.
[50]A. Kimura, M. Kawate, H. Hasegawa, T. Suzuki, Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films, Surface and Coatings Technology 169-170 (2003) 367-370.
[51]J. Chen, C. Guo, J Chen, J. He, Y. Ren, L. Hu, Microstructure, optical and electrical properties of CrAlN film as a novel material for high temperature solar selective absorber applications, Materials Letters 133 (2014) 71-74.
[52]R. Arvinte, J. Borges, R.E. Sousa, D. Munteanu, N.P. Barradas, E. Alves, F. Vaz, L. Marques, Preparation and characterization of CrNxOy thin films: The effect of composition and structural features on the electrical behavior, Applied Surface Science 257 (2011) 9120–9124.
[53]P. Basnyat, B. Luster, Z. Kertzman, S. Stadler, P. Kohli, S. Aouadi, J. Xu, S.R. Mishra, O.L. Eryilmaz, A. Erdemir, Mechanical and tribological properties of CrAlN-Ag self-lubricating films, Surface and Coatings Technology 202 (2007) 1011–1016.
[54]N. Kumari, A.K. Singh, P.K. Barhai, Study of Properties of AlN Thin Films Deposited by Reactive Magnetron Sputtering, Int. J. Thin Fil. Sci. Tec. 3, No. 2(2014) 43-49.
[55]A. Kadari, T. Schemme, D. Kadri, J. Wollschläger, XPS and morphological properties of Cr2O3 thin films grown by thermal evaporation method, Results in Physics 7 (2017) 3124–3129.
[56]J. Garcıa-Serrano, A.G. Galindoc, U. Pal, Au–Al2O3 nanocomposites: XPS and FTIR spectroscopic studies, Solar Energy Materials & Solar Cells 82 (2004) 291–298.
[57]蘇仕豪,錳、鉻摻雜InGaZnO4非晶態透明導電薄膜的物性研究,國立交通大學,電子物理學系,碩士論文,2009。[58]R. Yang, J. Liu, L. Lin, Y. Qu, W. Zheng, F. Lai, Optical properties and thermal stability of colored solar selective absorbing coatings with double layer antireflection coatings, Solar Energy 125 (2016) 453-459.
[59]H.C. Barshilia, N. Selvakumar, G, Vignesh, K.S. Rajam, A. Biswas, Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings, Solar Energy Materials & Solar Cells 93(2009) 315–323.