|
[1] Abdulla, A., & Verkert, K. (1968). Growth flowering and fruit-set of the tomato at higher temperature. Neth. J. Agric. Sci, 16, 71-76. [2] Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science, 26(1), 1-20. [3] Ahirwar, N., Gupta, G., Singh, V., Rawlley, R., & Ramana, S. (2015). Influence on growth and fruit yield of tomato (Lycopersicon esculentum Mill.) plants by inoculation with Pseudomonas fluorescence (SS5): Possible role of plant growth promotion. Int. J. Curr. Microbiol. Appl. Sci, 4(2), 720-730. [4] Ali, S. Z., Sandhya, V., Grover, M., Linga, V. R., & Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions, 6(4), 239-246. [5] Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1), 57-61. [6] Anaïs, G., & Laurent, H. (2011). Endophyte infection of Festuca eskia enhances seedling survival to drought and cutting at the expense of clonal expansion. Journal of Plant Ecology, 4(4), 201-208. [7] Andreote, F. D., Gumiere, T., & Durrer, A. (2014). Exploring interactions of plant microbiomes. Scientia Agricola, 71(6), 528-539. [8] Angadi, S., Cutforth, H., Miller, P., McConkey, B., Entz, M., Brandt, S., & Volkmar, K. (2000). Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of Plant Science, 80(4), 693-701. [9] Anjitha, G. (2017). Role of Endophytes in Insect Control. Acta Scientific Agriculture, 1(4), 1-3. [10] Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci., 197, 177-185. [11] Aydi, B. A. R., Jabnoun, K. H., Nefzi, A., & Daami, R. M. (2018). Evaluation of the Growth-Promoting Potential of Endophytic Bacteria recovered from healthy Tomato plants. J Hortic, 5(2), 234-243. [12] Bagheri, A. (2009). Effects of drought stress on chlorophyll, proline and rates of photosynthesis and respiration and activity of superoxide dismutase and peroxidase in millet (Panicum milenaceum L.). Paper presented at the National conference on water scarcity and drought management in agriculture, Islamic Azad University Arsanjan. [13] Balla, K., Rakszegi, M., Li, Z., Bekes, F., Bencze, S., & Veisz, O. (2011). Quality of winter wheat in relation to heat and drought shock after anthesis. Czech Journal of Food Sciences, 29(2), 117-128. [14] Bary, A. (1866). Morphologie und physiologie der pilze, flechten und myxomyceten: W. Engelmann. [15] Basha, P. O., Sudarsanam, G., Reddy, M. M. S., & Sankar, S. (2015). Effect of PEG induced water stress on germination and seedling development of tomato germplasm. Inter J. Recent Sci. Res, 6(5), 4044-4049. [16] Brdar, J. M., & Zdravković, J. (2015). Germination of tomatoes under PEG-induced drought stress. Ratarstvo i povrtarstvo, 52(3), 108-113. [17] Cansev, A. (2012). Physiological effects of high temperature treatments on leaves of olive cv. Gemlik. Plant Archives, 12(1), 521-525. [18] Chaitanya, K., Sundar, D., Masilamani, S., & Reddy, A. R. (2002). Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regulation, 36(2), 175-180. [19] Chodak, M., Gołębiewski, M., Morawska, P. J., Kuduk, K., & Niklińska, M. (2015). Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol, 65(3), 1627-1637. [20] Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678. [21] Conn, V. M., & Franco, C. M. (2004). Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol., 70(3), 1787-1794. [22] Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 201-213): Springer. [23] Dam, B. V., Goffau, M. D., De, J. L., & Naika, S. (2005). Cultivation of tomato: production, processing and marketing. [24] Daszkowska, G. A., & Szarejko, I. (2013). Open or close the gate–stomata action under the control of phytohormones in drought stress conditions. Frontiers in Plant Science, 4, 138-153. [25] Deuter, P., White, N., & Putland, D. (2012). Critical temperature thresholds case study: Tomato. Agriscience Queensland. [26] Diallo, A. T., Samb, P. I., & Roy, M. H. (2001). Water status and stomatal behaviour of cowpea, Vigna unguiculata (L.) Walp, plants inoculated with two Glomus species at low soil moisture levels. European Journal of Soil Biology, 37(3), 187-196. [27] Dinar, M., & Rudich, J. (1985). Effect of heat stress on assimilate partitioning in tomato. Annals of Botany, 56(2), 239-248. [28] Djanaguiraman, M., Prasad, P. V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48(12), 999-1007. [29] El, D. I. A. A., Bejai, S., & Meijer, J. (2014). Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant and soil, 379(1-2), 337-350. [30] FAO. (2004). Biotechnology applications in food processing: Can developing countries benefit? Paper presented at the Electronic forum on biotechnology in food and agriculture: conference 11. [31] FAO. (2013). FAO Statistical Yearbook: World Food and Agriculture [32] FAO. (2017). The impact of disasters and crises in on agriculture and food security. [33] Fasciglione, G., Casanovas, E. M., Quillehauquy, V., Yommi, A. K., Goñi, M. G., Roura, S. I., & Barassi, C. A. (2015). Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae, 195, 154-162. [34] Galippe, V. (1887). Note sur la présence de micro-organismes dans les tissus végétaux. CR Seances Soc Biol Fil, 39, 410-416. [35] Garavaglia, B. S., Garofalo, C. G., Orellano, E. G., & Ottado, J. (2009). Hsp70 and Hsp90 expression in citrus and pepper plants in response to Xanthomonas axonopodis pv. citri. European Journal of Plant Pathology, 123(1), 91-97. [36] Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied biochemistry and biotechnology, 178(4), 796-809. [37] Ghodsi, M., Nazeri, M., & Zarea, F. A. (1998). The reaction of new cultivars and elite lines of spring wheat into drought stress. Paper presented at the Collection of abstract articles of 5 th Iranian agronomy and plant breeding conference, Karaj, Iran. 252p. [38] Gianinazzi, S., Schüepp, H., Barea, J. M., & Haselwandter, K. (2012). Mycorrhizal technology in agriculture: from genes to bioproducts: Birkhäuser. [39] Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109-117. [40] Gonzalez, L., & Gonzalez, V. M. (2003). Determination of relative water content. Reigosa MJ: Dordrecht: Kluwer Academic. [41] Grobelak, A., Napora, A., & Kacprzak, M. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22-28. [42] Gulen, H., & Eris, A. (2004). Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 166(3), 739-744. [43] Guodaar, L. (2015). Effects of climate variability on tomato crop production in the Offinso North District of Ashanti region. [44] Hallmann, J., Quadt, H. A., Mahaffee, W., & Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895-914. [45] Hameed, A., Yeh, M. W., Hsieh, Y. T., Chung, W. C., Lo, C. T., & Young, L. S. (2015). Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant and soil, 394(1-2), 177-197. [46] Hardoim, P. R., Van, O. L. S., & Van, E. J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in microbiology, 16(10), 463-471. [47] Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643-9684. [48] Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. Agronomy journal, 103(2), 351-370. [49] Hay, R. K., & Porter, J. R. (2006). The physiology of crop yield: Blackwell Publishing. [50] Hemantaranjan, A., Bhanu, A. N., Singh, M., Yadav, D., Patel, P., Singh, R., & Katiyar, D. (2014). Heat stress responses and thermotolerance. Adv. Plants Agric. Res, 1(3), 62-70. [51] Hubbard, M., Germida, J., & Vujanovic, V. (2014). Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second‐generation seed viability. Journal of applied microbiology, 116(1), 109-122. [52] Iwahashi, Y., & Hosoda, H. (2000). Effect of heat stress on tomato fruit protein expression. Electrophoresise: An International Journal, 21(9), 1766-1771. [53] Kang, S. M., Khan, A. L., Waqas, M., You, Y. H., Kim, J. H., Kim, J. G., Hamayun, M., & Lee, I. J. (2014). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 9(1), 673-682. [54] Khan, A. L., Waqas, M., & Lee, I.-J. (2015). Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. Journal of plant research, 128(2), 259-268. [55] Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326. [56] Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. [57] Krishna, P. (2003). Plant responses to heat stress Plant responses to abiotic stress. Springer, 73-101 [58] Kuklinsky, S. J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani Kleiner, A. A., & Azevedo, J. L. (2004). Isolation and characterization of soybean‐associated bacteria and their potential for plant growth promotion. Environmental microbiology, 6(12), 1244-1251. [59] Lalngaihawmi, S., B., P., C., & Khatemenla. (2018). Effect of Rice Fungal Endophytes on Seed Germination and Seedling Growth of Rice. Int.J.Curr.Microbiol.App.Sci.App.Sc, 7(4), 3653-3663. [60] Larher, F., Leport, L., Petrivalsky, M., & Chappart, M. (1993). Effectors for the osmoinduced proline response in higher plants. Plant Physiology and Biochemistry, 31(6), 911-922. [61] Lee, K. H., Koh, R. H., & Song, H. G. (2008). Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions. The Journal of Microbiology, 46(6), 641-646. [62] Li, Y., Cheng, C., & An, D. (2017). Characterisation of endophytic bacteria from a desert plant Lepidium perfoliatum L. Plant Protection Science, 53(1), 32-43. [63] Lim, J. H., & Kim, S. D. (2013). Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. The plant pathology journal, 29(2), 201-208. [64] Liming, Y., Qian, Y., Pigang, L., & Sen, L. (2008). Expression of the HSP24 gene from Trichoderma harzianum in Saccharomyces cerevisiae. Journal of Thermal Biology, 33(1), 1-6. [65] Lo, C. T., & Lin, C. Y. (2002). Screening strains of Trichoderma spp for plant growth enhancement in Taiwan. Plant Pathology Bulletin(4), 215-220. [66] Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S., & Maleki, R. (2013). Physiological performance of soybean cultivars under drought stress. Bull. Env. Pharmacol. Life Sci, 2(6), 38-44. [67] Marcelis, L., Heuvelink, E., & Goudriaan, J. (1998). Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 74(1-2), 83-111. [68] Marschner, H. (2011). Marschner's mineral nutrition of higher plants: Academic press. [69] Matsuoka, H., Akiyama, M., Kobayashi, K., & Yamaji, K. (2013). Fe and P solubilization under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast. Current microbiology, 66(3), 314-321. [70] McInroy, J. A., & Kloepper, J. W. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and soil, 173(2), 337-342. [71] Meena, H., Ahmed, M. A., & Prakash, P. (2015). Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci Biotechno Res, 8(2), 171-174. [72] Mena, V. H. G., & Olalde, P. V. (2007). Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae, 113(1), 103-106. [73] Michel, B. E. (1983). Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol, 72(1), 66-70. [74] Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in plant science, 11(1), 15-19. [75] Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology advances, 32(2), 429-448. [76] Naqqash, T., Hameed, S., Imran, A., Hanif, M. K., Majeed, A., & van Elsas, J. D. (2016). Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Frontiers in Plant Science, 7, 144-155. [77] Persello, C. F., Nussaume, L., & Robaglia, C. (2003). Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ, 26(2), 189-199. [78] Pervez, M., Ayub, C., Khan, H., Shahid, M., & Ashraf, I. (2009). Effect of drought stress on growth, yield and seed quality of tomato (Lycopersicon esculentum L.). Pak. J. Agric. Sci, 46, 174-178. [79] Pillay, V., & Nowak, J. (1997). Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Canadian Journal of Microbiology, 43(4), 354-361. [80] Qariani, L., El, J. S., Dekkaki, M., & Araus, J. (2000). Cuticular conductance, water use efficiency and drought tolerance of durum wheat isolines of differing glaucousness. Options Méditerranéennes Série A, séminaires Méditerranéens, 40, 315-318. [81] Qi, J., Aiuchi, D., Tani, M., Asano, S. i., & Koike, M. (2016). potential of entomopathogenic Bacillus thuringiensis as plant growth promoting rhizobacteria and biological control agents for tomato Fusarium wilt. Int J Environ Agric Res, 2(6), 55-63. [82] Reese, E. T., Siu, R. G., & Levinson, H. S. (1950). The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of bacteriology, 59(4), 485-497. [83] Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: life on the verge of death. Molecular cell, 40(2), 253-266. [84] Rodriguez, R. J., Henson, J., Van, V. E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O., & Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME journal, 2(4), 404-416. [85] Rosenblueth, M., & Martínez, R. E. (2006). Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, 19(8), 827-837. [86] Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS microbiology letters, 278(1), 1-9. [87] Savicka, M., & Škute, N. (2010). Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija, 56(1), 26-33. [88] Sgobba, A., Paradiso, A., Dipierro, S., Degara, L., & Depinto, M. C. (2015). Changes in antioxidants are critical in determining cell responses to short‐and long‐term heat stress. Physiologia Plantarum, 153(1), 68-78. [89] Shekari, F. (2000). Effect of drought stress on phenology, water relations, growth, yield and quality canola. (Doctor Agriculture), University of Tabriz. [90] Shukla, N., Awasthi, R., Rawat, L., & Kumar, J. (2012). Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88. [91] Sørensen, J., & Sessitsch, A. (2007). Plant-associated bacteria-lifestyle and molecular interactions Modern soil microbiology (pp. 211-236): CRC press. [92] Sturz, A., Christie, B., Matheson, B., & Nowak, J. (1997). Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils, 25(1), 13-19. [93] Sung, D. Y., & Guy, C. L. (2003). Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiology, 132(2), 979-987. [94] Sung, D. Y., Vierling, E., & Guy, C. L. (2001). Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiology, 126(2), 789-800. [95] Tashi, G., Zhan, H., Xing, G., Chang, X., Zhang, H., Nie, X., & Ji, W. (2018). Genome-wide identification and expression analysis of heat shock transcription factor family in Chenopodium quinoa Willd. Agronomy, 8(7), 103-114. [96] Ude, S., Arnold, D. L., Moon, C. D., Timms, W. T., & Spiers, A. J. (2006). Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environmental microbiology, 8(11), 1997-2011. [97] Van, O. L., & Van, E. J. D. (2008). Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiology Ecology, 64(2), 283-296. [98] Wahid, A. (2007). Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal of plant research, 120(2), 219-228. [99] Wang, C., He, J., Zhao, T. H., Cao, Y., Wang, G., Sun, B., Yan, X., Guo, W., & Li, M. H. (2019). The smaller the leaf is, the faster the leaf water loses in a temperate forest. Frontiers in Plant Science, 10, 58-69. [100] Wang, N., Jin, T., Trivedi, P., Setubal, J., Tang, J., Machado, M. A., Triplett, E., Coletta-Filho, H., Cubero, J., & Deng, X. (2015). Announcement of the international citrus microbiome (Phytobiome) consortium. Journal of Citrus Pathology, 2(1), 1-2. [101] Waqas, M., Khan, A. L., Shahzad, R., Ullah, I., Khan, A. R., & Lee, I. J. (2015). Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. Journal of Zhejiang University-SCIENCE B, 16(12), 1011-1018. [102] Yu, A., Li, P., Tang, T., Wang, J., Chen, Y., & Liu, L. (2015). Roles of Hsp70s in stress responses of microorganisms, plants, and animals. Biomed Res Int, 2015. [103] Zhang, J., Huang, W., Pan, Q., & Liu, Y. (2005). Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest biology and technology, 38(1), 80-90. [104] Zhang, J., & Kirkham, M. (1996). Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist, 132(3), 361-373. [105] Zhang, X., Cai, J., Wollenweber, B., Liu, F., Dai, T., Cao, W., & Jiang, D. (2013). Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Journal of Cereal Science, 57(1), 134-140. [106] Zhang, Z. Y., Pan, L. P., & Li, H. H. (2010). Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. Journal of applied microbiology, 108(5), 1839-1849. [107] Zhou, J., Wang, J., Yu, J. Q., & Chen, Z. (2014). Role and regulation of autophagy in heat stress responses of tomato plants. Frontiers in Plant Science, 5, 174-185. [108] Zhu, Y., She, X., Wang, J., & Lv, H. (2017). Endophytic bacterial effects on seed germination and mobilization of reserves in ammodendron biofolium. Pak J Bot, 49, 2029-2035.
|