|
[ 1 ] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition”, Proceedings of the IEEE, Vol.86, No.11, pp. 2278-2324. [ 2 ] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Mathematics of Control, Signals and Systems, New York, USA, 1989, pp. 303-314. [ 3 ] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, ”What is the best multi-stage architecture for object recognition?”, IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009, pp. 2146-2153. [ 4 ] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines”, 27th International Conference on Machine Learning, Haifa, Israel, 2010. [ 5 ] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, Neural Information Processing Systems(NIPS), Lake Tahoe, Nevada, USA, 2012. [ 6 ]Y. L. Cun, B. Boser, J.S. Denker, R.E. Howard, W. Habbard, L.D. Jackel, and D. Henderson, “Handwritten digit recognition with a back-propagation network”, Neural Information Processing Systems(NIPS), San Francisco, USA, 1989. [ 7 ] D. Ciregan, U. Meier, and J. Schmidhuber, ”Multi-column deep neural networks for image classification”, IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 3642-3649. [ 8 ] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors”, arXiv preprint arXiv:1207.0580, 2012. [ 9 ] M. D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks”, European Conference on Computer Vision, Zurich, Switzerland, 2014, pp. 818-833 [ 10 ] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional networks for mid and high level feature learning”, International Conference on Computer Vision, Barcelona, Spain, 2011, pp. 2018-2025. [ 11 ] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015. [ 12 ] M. Lin, Q. Chen, and S. Yan, “Network In Network”, International Conference on Learning Representations (ICLR), Banff, Canada, 2014. [ 13 ] K. He, X. Zhang, S. Ren, and J. Sun, ”Deep Residual Learning for Image Recognition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016, pp. 770-778. [ 14 ] X. Zeng, W. Ouyang, J. Yan, H. Li, T. Xiao, K. Wang, Y. Liu, Y. Zhou, B. Yang, Z. Wang, H. Zhou, and X. Wang, “Crafting GBD-Net for Object Detection”, arXiv preprint arXiv:1610.02579, 2016. [ 15 ] S. Gidaris, N. Komodakis, “Object Detection via a Multi-region and Semantic Segmentation-Aware CNN Model”, IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1134-1142. [ 16 ] J. Hu, L. Shen, and G. Sun, ” Squeeze-and-Excitation Networks”, IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 7132-7141.
|