[1]Corbin, C. B. (1966). The professional process. The Physical Educator, 23, 173-174.
[2]Corbin, C. B. (1993). The field of physical education—Common goals, not common roles. Journal of Physical Education, Recreation & Dance, 64(1), 79-87.
[3]Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.
[4]Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003, August). Best practices for convolutional neural networks applied to visual document analysis. In ICDAR (Vol. 3, pp. 958-962).
[5]LeCun, Y., Bottou,L., Bengio, Y., and Haffner, P. (1998), “Gradient-based learning applied to document recognition,” in : Proceedings of the IEEE, 86 (11), pp. 2278-2324.
[6]Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., & Saenko, K. (2014). Translating videos to natural language using deep recurrent neural networks. arXiv preprint arXiv:1412.4729.
[7]Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
[8]Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99).
[9]Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
[10]Joachims, T. (2006, August). Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 217-226). ACM.
[11]Kong, T., Yao, A., Chen, Y., & Sun, F. (2016). Hypernet: Towards accurate region proposal generation and joint object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 845-853).
[12]Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International journal of computer vision, 104(2), 154-171.
[13]Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., Gambardella, L. M. (2011, November). Max-pooling convolutional neural networks for vision-based hand gesture recognition. In Signal and Image Processing Applications (ICSIPA), 2011 IEEE International Conference on (pp. 342-347). IEEE.
[14]Adit Deshpande. (2016). A Beginner's Guide To Understanding Convolutional Neural Networks Part 2,取自https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
[15]Barezi, E. J., Kampman, O., Bertero, D., & Fung, P. (2018). Investigating Audio, Visual, and Text Fusion Methods for End-to-End Automatic Personality Prediction. arXiv preprint arXiv:1805.00705.
[16]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[17]Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
[18]Alexe, B., Deselaers, T., & Ferrari, V. (2012). Measuring the objectness of image windows. IEEE transactions on pattern analysis and machine intelligence, 34(11), 2189-2202.
[19]Otberdout, N., Kacem, A., Daoudi, M., Ballihi, L., & Berretti, S. (2018). Deep Covariance Descriptors for Facial Expression Recognition. arXiv preprint arXiv:1805.03869.
[20]He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017, October). Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 2980-2988). IEEE.
[21]Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal processing, 29(6), 1153-1160.
[22]Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017, July). Feature pyramid networks for object detection. In CVPR (Vol. 1, No. 2, p. 4).
[23]ir413. Rbgirshick. Ashwinb. KaimingHe. Shenyunhang. Juggernaut93. roytseng-tw. Yangqing. Gadcam. agrimgupta92. Katotetsuro.(2018). facebookresearch/Detectron,取自https://github.com/facebookresearch/Detectron
[24]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
[25]Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
[26]OpenCV (2011).OpenCV,2018年07月10日,取自https://opencv.org/
[27]LabelMe (2015).LabelMe,2018年07月10日,取自https://github.com/wkentaro/labelme
[28]Tomasz Grel(2017).Region of interest pooling explained,2017年02月28日,取自https://deepsense.ai/region-of-interest-pooling-explained/
[29]cs231n(2018). Convolutional Neural Networks (CNNs / ConvNets),2018年07月14日,取自http://cs231n.github.io/convolutional-networks/#pool
[30]IAAF(2002).Official handbook 2002-2003(pp.112-113).
[31]卓俊伶(2011)。體育與運動科學研究現況的批判與省思。體育學報, 44(3), 315-332。
[32]劉淑華(2006a)。短跑選手步幅, 步頻與平均速度之相關研究。輔仁大學體育學刊,(5), 171-184。
[33]劉淑華(2006b)。大專甲, 乙組選手百公尺跑速度之比較分析。運動教練科學, (6), 23-29。
[34]宋旭敏,任冀軍(2004)。中、外優秀男子100m 跑運動員成績差距的比較。體育與科學, 25(6), 75-78。
[35]施芹(1999)。談談影響我國短跑運動成績的幾個因素。徐州教育學院學報, (4), 125-126。
[36]劉欣儀(2010)。物聯網全球佈局與未來發展挑戰。臺灣經濟研究月刊, 33(12), 119-127。
[37]李尹鑫,相子元(2016)。穿戴科技於運動科學之應用。中華體育季刊, 30(2), 121-127。
[38]李文姬(2005)。木球之運動科學應用與技術之探討。大專體育, (79), 22-28。
[39]劉豔春(2011)。遠度專案踏跳越線犯規顯示儀的研發(Master's thesis, 河北師範大學).
[40]許樹淵(1996)。田徑論。臺北市:偉彬體育研究社。
[41]沈予涵(2017)。基於卷積神經網絡之乳房彈性超音波影像電腦輔助診斷。臺灣大學生醫電子與資訊學研究所學位論文。臺北市。
[42]藍偉任(2017)。應用卷積神經網絡於支氣管超音波影像診斷。臺灣大學生醫電子與資訊學研究所學位論文。臺北市。
[43]陳君函(2017)。從能量層面探討卷積神經網絡及其架構。清華大學資訊工程學系所學位論文。新竹市。
[44]張守德(2017)。物聯網與深度學習影響下伺服器的演進與未來發展。輔仁大學科技管理學程碩士論文。新北市。