|
[1]Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of life support systems (EOLSS). Forerunner Volume-‘Perspectives and overview of life support systems and sustainable development. [2]洪翊桓. (2009). 三牙配位二價釕金屬敏化染料之合成及 DSSC 元件製備. 清華大學化學系所學位論文, 1-88 [3]Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature materials, 4(6), 435. [4]Law M, Greene L E, Johnson J C, Saykally R and Yang P, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater. 4(2005) 435. [5]李赫,2018,”再生能源行不行?先從盤點台灣能源現況開始吧”,,泛科學。 [6]戴德,”BP世界能源統計年鑑”,2017。 [7]楊恕帆, 郭浩中, & 盧廷昌. (2007). 陣列微米孔洞表面糙化製程對於砷化鎵太陽電池效率之影響 (Doctoral dissertation). [8]Fara, L. (Ed.). (2012). Advanced solar cell materials, technology, modeling, and simulation. IGI Global. [9]吳鎮國,林鴻,盧以昕,許仲成,陳欣卉,”淺談太陽能電池的原理與應用” 臺大電機系科普系列。 [10]楊茹媛,翁敏航,陳皇宇,張育綺,2008, ”由專利分析看染料敏化太陽能電池趨”,光連雙月刊,No.75。 [11]Tributsch, H. (2004). Dye sensitization solar cells: a critical assessment of the learning curve. Coordination Chemistry Reviews, 248(13-14), 1511-1530. [12]M. H. Yang,“太陽電池用透明導膜材料”,工業材料雜誌,265期 [13]童永樑,”釕金屬染料在染料敏化太陽電池所扮演的關鍵性角色”,2008,工業材料雜誌255期。 [14]洪崇堯, & 陳錦地. (2010). 染料敏化太陽能電池染料共軛結構對穩定度之探討 (Doctoral dissertation). [15]Nazeeruddin, M. K., Pechy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., ... & Spiccia, L. (2001). Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 123(8), 1613-1624. [16]Wolfbauer, G., Bond, A. M., Eklund, J. C., & MacFarlane, D. R. (2001). A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 70(1), 85-101. [17]崔孟晉,”染料敏化太陽能電池電解質概述”,2008,工業材料雜誌257期。 [18]張庭瑋. (2014). 白金/碳黑複合對電極的製備及其在染料敏化太陽能電池的應用. 成功大學化學工程學系學位論文, 1-94. [19]Papageorgiou, N., Maier, W. F., & Grätzel, M. (1997). An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of the electrochemical Society, 144(3), 876-884. [20]Hauch, A., & Georg, A. (2001). Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica acta, 46(22), 3457-3466. [21]翁敏航,2010,太陽能電池,第七章,東華書局。 [22]Pan, J. M., Maschhoff, B. L., Diebold, U., & Madey, T. E. (1992). Interaction of water, oxygen, and hydrogen with TiO2 (110) surfaces having different defect densities. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10(4), 2470-2476. [23]Hugenschmidt, M. B., Gamble, L., & Campbell, C. T. (1994). The interaction of H2O with a TiO2 (110) surface. Surface Science, 302(3), 329-340. [24]Lu, G., Linsebigler, A., & Yates Jr, J. T. (1994). Ti3+ defect sites on TiO2 (110): production and chemical detection of active sites. The Journal of Physical Chemistry, 98(45), 11733-11738. [25]Barnard, A. S., Zapol, P., & Curtiss, L. A. (2005). Modeling the morphology and phase stability of TiO2 nanocrystals in water. Journal of Chemical Theory and Computation, 1(1), 107-116. [26]Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56. [27]李元堯,2003,”21世紀的尖端材料-奈米碳管”,化工技術,第11卷,第2期,第140-159 頁。 [28]洪昭南,徐逸明,王宏達,2002,”奈米碳管結構及特性簡介”,化工技術,第49卷第1期,第23-30頁。 [29]Hone, J., Batlogg, B., Benes, Z., Johnson, A. T., & Fischer, J. E. (2000). Quantized phonon spectrum of single-wall carbon nanotubes. Science, 289(5485), 1730-1733. [30]Yang, Y. H., & Li, W. Z. (2011). Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Applied Physics Letters, 98(4), 041901. [31]M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, 1996, “Science of fullerenes and carbon nanotubes”, Academaic Press, Chap 19. [32]王裕祥. (2003). 利用高分子材料及電弧放電法製造奈米碳管(Doctoral dissertation, 撰者). [33]Hu H, Zhao B, Itkis ME, Haddon RC. Nitric acid purification of single-walled carbon nanotubes. J Phys Chem 2003:107:13838-42. [34]劉英麟,”特定有機高分子改質奈米碳管之生產與應用技術開發研究成果報告(精簡版) ”,2010,行政院國家科學委員會專題研究計畫成果報告。
[35]Bower, C., Kleinhammes, A., Wu, Y., & Zhou, O. (1998). Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid. Chemical Physics Letters, 288(2-4), 481-486. [36]Dillon, A. C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A., & Heben, M. J. (1999). A simple and complete purification of single‐walled carbon nanotube materials. Advanced Materials, 11(16), 1354-1358.. [37]Ko, F. H., Lee, C. Y., Ko, C. J., & Chu, T. C. (2005). Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel. Carbon, 43(4), 727-733. [38]Fan, Q. Q., Qin, Z. Y., Liang, X., Li, L., Wu, W. H., & Zhu, M. F. (2010). Reducing defects on multi-walled carbon nanotube surfaces induced by low-power ultrasonic-assisted hydrochloric acid treatment. Journal of Experimental Nanoscience, 5(4), 337-347. [39]Ovejero, G., Sotelo, J. L., Romero, M. D., Rodríguez, A., Ocana, M. A., Rodríguez, G., & Garcia, J. (2006). Multiwalled carbon nanotubes for liquid-phase oxidation. Functionalization, characterization, and catalytic activity. Industrial & engineering chemistry research, 45(7), 2206-2212. [40]Vaccarini, L., Goze, C., Aznar, R., Micholet, V., Journet, C., & Dernier, P. (1999). Purification procedure of carbon nanotubes. Synthetic Metals, 103(1-3), 2492-2493. [41]Yu, H., Jin, Y., Peng, F., Wang, H., & Yang, J. (2008). Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation. The Journal of Physical Chemistry C, 112(17), 6758-6763.. [42]Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., & Shaffer, M. (2007). Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, (5), 513-515. [43]Goyanes, S., Rubiolo, G. R., Salazar, A., Jimeno, A., Corcuera, M. A., & Mondragon, I. (2007). Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond and related materials, 16(2), 412-417. [44]Ghartavol, H. M., Mohammadi, M. R., Afshar, A., Hong, F. C. N., & Jeng, Y. R. (2016). Efficient dye-sensitized solar cells based on CNT-derived TiO 2 nanotubes and Nb-doped TiO 2 nanoparticles. RSC Advances, 6(103), 101737-101744. [45]Eitan, A., Jiang, K., Dukes, D., Andrews, R., & Schadler, L. S. (2003). Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 15(16), 3198-3201. [46]Chen, J., Li, B., Zheng, J., Zhao, J., & Zhu, Z. (2012). Role of carbon nanotubes in dye-sensitized TiO2-based solar cells. The Journal of Physical Chemistry C, 116(28), 14848-14856.
[47]Hu, J., Xie, Y., Bai, T., Zhang, C., & Wang, J. (2015). A novel triple-layer zinc oxide/carbon nanotube architecture for dye-sensitized solar cells with excellent power conversion efficiency. Journal of Power Sources, 286, 175-181. [48]曾俊豪, 王振乾, & 陳志勇. (2006). 以電漿改質多壁奈米碳管並以其為模板成長 CdS 奈米晶體. Nanotechnology, 17(22), 5602-5612. [49]黎明化工,”掃描電鏡的45個知識點匯總”,2018,雪花新聞。 [50]顏銓佑. (2008). 奈米碳管/奈米複合材料於染料敏化太陽能電池之製備與性質研究. 清華大學化學工程學系學位論文, 1-216. [51]Keysight Technologies,太陽能/光電電池之IV及CV特性分析-使用B1500A,2014,台灣是德科技股份有限公司。 [52]鄭傑中. (2009). 二氧化鈦奈米管陣列的製備與分析及染料敏化太陽能電池的應用. 臺北科技大學有機高分子研究所學位論文, 1-116. [53]Verlinden, P., Evrard, O., Mazy, E., & Crahay, A. (1992). The surface texturization of solar cells: a new method using V-grooves with controllable sidewall angles. Solar energy materials and solar cells, 26(1-2), 71-78. [54]陳政廷. (2008). 混合有機色素分子共增感對色素增感太陽電池光電轉換效率的影響. 成功大學化學工程學系學位論文, 1-114. [55]Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y., & Isoda, S. (2006). Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B, 110(28), 13872-13880.. [56]曾元兒,張凌,儀器分析,科學出版社. 12. ISBN 978-7-03-019488-6。
|