[1]2015, The International Technology Roadmap for Semiconductor, ITRS.
[2]S. P. Murarka, Multilevel interconnections for ULSI and GSI era, Mater. Sci. Eng., R 19 (1997) 87–151.
[3]L. Peters, Advancing aluminum interconnect technology, Semiconductor International, (1998) 83.
[4]R. D. Millera, G. Dubois, “Low Dielectric Constant Materials”, Chemical Reviews, (2009) 24.
[5]J.M. Steigerwald, S.P. Murarka, R.J. Gutmann, D.J. Duquette, Chemical process in the chemical mechanical polishing of copper, Mater. Chem. Phys., 41 (1995) 217.
[6]T. Licata, J. Gambino, S. Nguyen, M. Ronay, Dual Damascene A1 wiring for 256M DRAM, VMIC, 91 (1995) 596.
[7]R.F. Schnabl, D. Dobuzinsky, J. Gambino, K.P. Muller, F. Wang, D.C. Perng, H. Palm, Dry etch challenges of 0.25 μm dual damascene structures, Microelectron. Eng., 37-38 (1997) 59-65.
[8]Peter Singer, Semiconductor International, (1997) 79.
[9]M. R. Baklanov, S. Vanhaelemeersch, H. Bender, K. Maex, Effects of oxygen and fluorine on the dry etch characteristics of organic low-k dielectrics, Vac. Sci. Technol., 17 (1999) 372.
[10] Laura Peters, Semiconductor International, (1998) 64.
[11] O. Chyan, T. N. Arunagiri, T. Ponnuswamy, Electrodeposition of Copper Thin Film on Ruthenium. A Potential Diffusion Barrier for Cu Interconnects, J. Electrochem. Soc., 150 (2003) 347-350.
[12]Byoungyong Im, Sunjung Kim , Soo-Hyun Kim, Influence of additives upon Cu thin film growth on atomic-layer-deposited Ru layer and trench-filling by direct electrodeposition, Thin Solid Film, 636 (2017) 251-256.
[13] D. Josell, D. Wheeler, C. Witt, T. P. Moffat, Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers, Electrochem. Solid-State Lett., 6 (2003) 143-145.
[14] R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, T. Q. Hurd, Diffusion studies of copper on ruthenium thin film, Electrochem. Solid-State Lett., 7 (2004) 154–157.
[15] S.M. Choi,K. C. Park, B. S. Suh, I. R. Kim, H. K. Kang, K. P. Suh, H. S. Park, J. S. Ha, D. K. Joo, Process integration of CVD Cu seed using ALD Ru glue layer for sub-65nm Cu interconnect, IEEE VLSI Tech. Symp., 15-17 (2004) 64-65.
[16] T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, L. C. Chen,5 nm ruthenium thin film as a directly plateable copper diffusion barrier, Appl. Phys. Lett., (2005) 86-88.
[17] D. C. Perng, J. B. Yeh, K. C. Hsu, Phosphorous doped Ru film for advanced Cu diffusion barriers, Appl. Surf. Sci., 254 (2008) 6059–6062.
[18] S.M. Choi, K. C. Park, B. S. Suh, I. R. Kim, H. K. Kang, K. P. Suh, H. S. Park, J. S. Ha, D. K. Joo, Process integration of CVD Cu seed using ALD Ru glue layer for sub-65nm Cu interconnect, IEEE VLSI Tech. Symp., 15-17 (2004) 64-65.
[19] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Delogianni, “Damascene copper electroplating for chip interconnections”, IBM J. Res. Dev., 42, (1998) pp. 567.
[20] T. P. Moffat, M. Walker, P. J. Chen, J. E. Bonevich, W. F. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala, M. Leskela, and D. Josell, “Electrodeposition of Cu on Ru barrier layers for damascene processing”, Journal of the Electrochemical Society, 153,1 (2006) C37–C50.
[21] L. Guo, A. Radisic, P. C. Searson, “Electrodeposition of copper on oxidized ruthenium”, Journal of the Electrochemical Society, 153, 12 (2006) C840–C847.
[22] K. Wang, A. Horsfall, A. Cuthbertson, S. Bull, A. O’Neill, “Comparative study of novel barrier layers in ULSI copper interconnects”, Microelectronic Engineering, 84 (2007) pp. 2486–2490.
[23] C. C. Yang, T. Spooner, S. Ponoth, K. Chanda, A. Simon, C. Lavoie, M. Lane, C. K. Hu, E. Liniger, L. Gignac, T. Shaw, S. Cohen, F. McFeely, D. Edelstein, “Physical, electrical, and reliability characterization of Ru for Cu interconnects”, International Interconnect Technology Conference, San Fancisco, CA, USA, June 5–7. (2006) pp. 187–190,
[24] J. Koike, M. Wada, Self-forming diffusion barrier layer in Cu–Mn alloy metallization, Appl. Phys. Lett., 87 (2005) 041911.
[25] J. Iijima, M. Haneda, J. Koike, Cu alloy metallization for self-forming barrier process, Proc. IEEE Int. Ins. Technol. Conf., (2006)161-163
[26] J. Koike, M. Haneda, J. Iijima, M. Wada, “Cu alloy metallization for self-forming barrier process”, IEEE Int. Ins. Technol. Conf., (2006) pp. 161.
[27] M. Haneda, J. Iijima, J. Koike, “Growth behavior of self-formed barrier at Cu–Mn/SiO2 interface at 250–450°C”, Appl. Phys. Lett., 90, (2007) pp. 252107.
[28] Y.S. Diamand, S. Lopatin, Integrated electroless metallization for ULSI, Electrochimi Acta 44 (1999) 3639-3649.
[29] S. Wolf, Silicon Processing for the VLSI ERA Vol.4 deep-submicron process technology, Ch: 16, L. Press (2002).
[30] J.R. Lloyd, J.J. Clement, Electromigration in copper conductors, Thin Solid Films, 262 (1995) 135-141.
[31] H. Cai, D. Tong, Y. Wang, X. Song, B. Ding, Reactive synthesis of porous Cu3Si compound, J. Alloys Compd., 509 (2011) 1672-1676.
[32] H.Y. Wong, N.F. Mohd Shukor, N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J., 38 (2007) 777-782.
[33] J.D. McBrayer, R.M. Swanson, Y.W. Sigmon, Diffusion of metals in silicon dioxide, J. Electrochem. Soc., 133 (1986) 1242-1246.
[34] D. Hoffstetter, W.G. Oldham, Copper Transport in thermal SiO2, J. Electrochem. Soc, 140 (1993) 2427-2432.
[35] A.A. Solovyev, V.A. Semenov, V.O. Oskirko, K.V. Oskomov, A.N. Zakharov, S.V. Rabotkin, Properties of ultra-thin Cu films grown by high power pulsed magnetron sputtering, Thin Solid Film, 631 (2017) 72-79.
[36] P.V. Bhuvaneswari, K. Ramamurthi, R.R. Babu, Influence of substrate temperature on the structural, morphological, optical and electrical properties of copper telluride thin films prepared by electron beam evaporation method, Thin Solid Film, 632 (2017) 44-49
[37] Z. Cao, X. Ding, R. Bagheri, A.G. Wattoo, C. Xu, L. Yang, L. Song, Y. Wen, Z.Song, The deposition, microstructure and properties of Al protective coatings for NdFeB magnets by multi-arc ion plating, Vacuum, 142 (2017) 37-44
[38] K. Gelin, Preparation and Characterization of Sputter Deposited Spectrally Selective Solar Absorber, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Sci. and Technology, 958 (2004)
[39] 白木 靖寬/吉田 貞史,2003,“薄膜工程學",全華圖書股份有限公司,99第一章、第二章。
[40] 張勁燕,2001,“半導體製程設備”,五南圖書出版有限公司,第九章,359。
[41] 張永宏,2005,“氧化鋁薄膜於太陽能選擇性吸收膜之研究”,龍華科技大學機械研究所碩士論文[42] Lina Liljeholm, Reactive Sputter Deposition of Functional Thin Films, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Sci. and Technology, (2012) 945
[43] 余介文,"表面處理",全華科技圖書公司。
[44] M. An, J. Zhang, L. Chang, Study of the electrochemical deposition of Sn–Ag–Cu alloy by cyclic voltammetry and chronoamperometry, Electrochimica Acta, 54 (2009) 2883-2889.
[45] Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes: Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes
[46] J. M. Fisher, L. E. A. Berlouis, B. N. Rospendowski, P. J. Hall, M. G. Astles, In situ ellipsometry studies of electrodeposited cadmium telluride films on cadmium mercury telluride”, Semicond. Sci. Technol., 8 (1993) 1459-1464.
[47] L. Oniciu, L. Muresan, Some fundamental aspects of leveling and brightening in metal electordepostion, J. Appl. Electrochem., 21 (1991) 565-574.
[48] D. Nam, R. Kim, D. Han, J. Kim, H. Kwon, Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition, Electrochim. Acta, 56 (2011) pp. 9397-9405
[49] M. Hareifar, M. Zandrahimi, Effect of current density and electrolyte pH on microstructure of Mn–Cu electroplated coatings, Applied Surface Science, 284 (2013), pp. 126-132
[50]Mónica Fernández-Barcia, Volker Hoffmann, Steffen Oswald, Lars Giebeler, Ulrike Wolff, Margitta Uhlemann, Annett Gebert, Electrodeposition of manganese layers from sustainable sulfate based
Electrolytes, Surface & Coatings Technology 334 (2018), 261-268.
[51]R. Beatty, Manganese Elements, Benchmark Books, (NY) United States (2004)
[52] D. Josell, D. Wheeler, C. Witt, and T. P. Moffat, “Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers”, Electrochem. Solid-State Lett., 6 (2003) C143.
[53] O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, “Electrodeposition of Copper Thin Film on Ruthenium. A Potential Diffusion Barrier for Cu Interconnects”, J. Electrochem. Soc., 150 (2003) C347.
[54] M. A. Nicolet, Diffusion Barriers in Thin Films, Thin Solid Films, 52 (1978) 415.
[55] M. Haneda, J. Iijima, J. Koike, Growth behavior of self-formed barrier at Cu–Mn/SiO2 interface at 250–450℃,Appl. Phys. Lett., 90 (2007) 252107.
[56] T. Usui, H. Nasu, S. Takahashi, N. Shimizu, T. Nishikawa, M. Yoshimaru, H. Shibata, M. Wada, J. Koike, Highly reliable copper dual-damascene interconnects with self-formed MnSixOy barrier Layer, IEEE Trans. Electron Devices, 53 (2006) 2492-2499.
[57] J. Koike, M. Haneda, J. Iijima, M. Wada , “Cu alloy metallization for self-forming barrier process”, In IRPS (Burlingame), (2006) pp. 161–163.
[58] J. Iijima, Y. Fujii, K. Neishi, J. Koike, Resistivity reduction by external oxidation of Cu-Mn alloy films for semiconductor interconnect application, J. Vac. Sci. Technol., 27 (2009) 1963-1968.
[59] S. M. Chung, J. Koike, Analysis of dielectric constant of a self-forming barrier layer with Cu-Mn alloy on TEOS-SiO2, J. Vac. Sci. Technol., 27 (2009) 28-31.
[60]Jae-Hyung Park, Dong-Suk Han, Kyoung-Deok Kim, and Jong-Wan Park, Effects of plasma pretreatment on the process of self-forming Cu–Mn alloy barriers for Cu interconnects, AIP Advances 8, 025007 (2018) 025007 1-7.
[61]K.H. Nagy, F. Misják, In-situ transmission electron microscopy study of thermal stability and carbide formation in amorphous Cu-Mn/C films for interconnect applications, Journal of Physics and Chemistry of Solids, 121 (2018) 312-318.
[62]C. J. Wilson, H. Volders, K. Croes, M. Pantouvaki, G. P. Beyer, A. B. Horsfall, A. G. O’Neill, Z. Tokei, In situ x-ray diffraction study of self-forming barriers from a Cu-Mn alloy in 100 nm Cu/low-k damascene interconnects using synchrotron radiation, Microelectron. Eng., 87 (2010) 398-401.
[63] Y. Otsuka, J. Koike, H. Sako, K. Ishibashi, N. Kawasaki, S. M. Chung, I. Tanaka, Graded composition and valence states in self-forming barrier layers at Cu–Mn/SiO2 interface, Appl. Phys. Lett., 96 (2010) 012101.
[64] J. Gong, G. Wei, J. A. Barnard, G. Zangari, “Electrodeposition and characterization of sacrificial copper–manganese alloy coatings: part II. Structural, mechanical, and corrosion-resistance properties”, Metall. Mater. Trans. A 36 (2005) pp. 2705–2715.
[65] F. Mangolini, L. Magagnin, P. l. Cavalloti, “Pulse plating of Mn–Cu alloys on steel”, J. Electrochem. Soc., 153 (2006) C623–C628.
[66] P. Y. Chena, M. J. Dengb, D. X. Zhuanga, “Electrochemical codeposition of copper and manganese from room-temperature N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid”, Electrochimica Acta, 54 (2009) pp. 6935–6940.
[67] J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, T.S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition, Appl. Surf. Sci., 364 (2016) 358-364.
[68] W.-S. Chiang, J.-Q. Huang, P.-C. Chen, P.-W. Wu, A. Joi, Y. Dordi, Pulse electrodeposition of copper-manganese alloy in deep eutectic solvent, J. Alloys Compd., 742 (2018) pp. 38-44.
[69] J. Gong, I. Zana, G. Zangari, Electrochemical synthesis of crystalline and amorphous Manganese coatings, J. Mater. Sci. Lett., 20 (2001) pp. 1921-1923.
[70] P. Wei, O.E. Hileman, M.R. Bateni, X. Deng, A. Petric, Manganese deposition without additives, Surf. Coat. Technol., 201 (2007) pp. 7739-7745.
[71] M. Damayanti, T. Sritharan, S. G. Mhaisalkar, E. Phoon, and L. Chan, Study of Ru barrier failure in the Cu/Ru/Si system, J. Mater. Res., 22 (2007) 2505.
[72] T.-C. Kuo, Y.-H. Su, W.-H. Lee, W.H. Liao, Y.-S. Wang, C.-C. Hung, Y.-L. Wang , A study on the plating and wetting ability of ruthenium-tungsten multi-layers for advanced Cu metallization Microelectron, Eng., 162 (2016), pp. 27-33.
[73] T. Laurila, K. Zeng, J. K. Kivilahti, J. Molarius, and I. Suni, “Failure mechanism of Ta diffusion barrier between Cu and Si″, J. Appl. Phys., vol. 88 (2000) pp. 3377–3384.
[74] Guo, J.; Zhang, X.; Du, X.; Zhang, F. Mn3O4 Nano-Wall Array Based, Binder-free Cathode for High Performance Lithium-sulfur Batteries. J. Mater. Chem. A (2017) 5, 6447– 6454.
[75] G. Avgouropoulos, T. Ioannides., “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method”, Applied Catalysis A: General, 244 (2003) pp. 155–167.