|
[1] Mamunya YP, Davydenko V, Pissis P, Lebedev E. Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal 2002;38:1887-97. [2] Hall R, Scott J, Laskin S, Stroud C, Stokinger H. Acute Toxieity of Inhaled Beryllium. III. Observations correlating Toxieity with the Physieochemical Properties of Beryllium Oxide Dust. Arch Indust Hyg & Occupational Med 1950;2:25-48. [3] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano letters 2008;8:902-7. [4] Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano letters 2008;8:3498-502. [5] Zhao X, Zhang Q, Chen D, Lu P. Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 2010;43:2357-63. [6] Liu L, Barber AH, Nuriel S, Wagner HD. Mechanical Properties of Functionalized Single‐Walled Carbon‐Nanotube/Poly (vinyl alcohol) Nanocomposites. Advanced Functional Materials 2005;15:975-80. [7] Berber S, Kwon Y-K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Physical review letters 2000;84:4613. [8] Lin Y, Connell JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 2012;4:6908-39. [9] Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society 2009;131:890-1. [10] Sato K, Horibe H, Shirai T, Hotta Y, Nakano H, Nagai H, et al. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. Journal of Materials Chemistry 2010;20:2749-52. [11] Zhang X, Zhang X, Yang M, Yang S, Wu H, Guo S, et al. Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity. Composites Science and Technology 2016;136:104-10. [12] Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS nano 2014;8:3606-13. [13] Liu J, Wang X, Li D, Coates NE, Segalman RA, Cahill DG. Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity. Macromolecules 2015;48:585-91. [14] Jin J, Manoharan MP, Wang Q, Haque M. In-plane thermal conductivity of nanoscale polyaniline thin films. Applied Physics Letters 2009;95:033113. [15] Watari K, Ishizaki K, Tsuchiya F. Phonon scattering and thermal conduction mechanisms of sintered aluminium nitride ceramics. Journal of Materials Science 1993;28:3709-14. [16] Jönsson S, Birgerson J, Crispin X, Greczynski G, Osikowicz W, Van Der Gon AD, et al. The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synthetic Metals 2003;139:1-10. [17] Wei Q, Mukaida M, Naitoh Y, Ishida T. Morphological change and mobility enhancement in PEDOT: PSS by adding co‐solvents. Advanced materials 2013;25:2831-6. [18] Mengistie DA, Ibrahem MA, Wang P-C, Chu C-W. Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells. ACS applied materials & interfaces 2014;6:2292-9. [19] Xia Y, Sun K, Ouyang J. Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced Materials 2012;24:2436-40. [20] Kreith F, Manglik RM, Bohn MS. Principles of heat transfer: Cengage learning; 2012.
|