|
[1] Okamoto, K., & Kawakami, Y. (2009). High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(4), 1199-1209. [2] Schubert, E. F., & Kim, J. K. (2005). Solid-state light sources getting smart. Science, 308(5726), 1274-1278. [3] Lin, C. F., Zheng, J. H., Yang, Z. J., Dai, J. J., Lin, D. Y., Chang, C. Y., Hong, C. S. (2006). High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure. Applied Physics Letters, 88(8), 083121. [4] Poitras, D., & Dobrowolski, J. (2004). Toward perfect antireflection coatings. 2. Theory. Applied optics, 43(6), 1286-1295. [5] Jeong, S. H., Kim, J. K., Kim, B. S., Shim, S. H., & Lee, B.-T. (2004). Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating. Vacuum, 76(4), 507-515. [6] Martinet, C., Paillard, V., Gagnaire, A., & Joseph, J. (1997). Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating. Journal of Non-Crystalline Solids, 216, 77-82. [7] Zhao, J., & Green, M. A. (1991). Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Transactions on Electron Devices, 38(8), 1925-1934. [8] Boden, S. A., & Bagnall, D. M. (2008). Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters, 93(13), 133108. [9] Jae-Jun Kima, Y. L., Ha Gon Kimb, Ki-Ju Choic, Hee-Seok Kweonc, Seongchong Parkd, and Ki-Hun Jeonga,1. (2012). Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Massachusetts Institute of Technology. [10] Kim J. J, Lee Y, Kim H.G, Choi K. J., H. S. Kweon, Park S, Jeong K. H, Biologically inspired LED lens from cuticular nanostructures of firefly lantern (2012). Proceedings of the national academy of sciences 109(46) 18674-18678. [11] Kim, J. J., Lee, J., Yang, S. P., Kim, H. G., Kweon, H. S., Yoo, S., & Jeong, K. H. (2016). Biologically Inspired Organic Light-Emitting Diodes. Nano Lett, 16(5), 2994-3000. [12] Sun, M., Liang, A., Zheng, Y., Watson, G. S., & Watson, J. A. (2011). A study of the anti-reflection efficiency of natural nano-arrays of varying sizes. Bioinspir Biomim, 6(2), 026003. [13] Rao, J., Winfield, R., & Keeney, L. (2010). Moth-eye-structured light-emitting diodes. Optics Communications, 283(11), 2446-2450. [14] Bernhard, C., & Miller, W. H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiologica Scandinavica, 56(3‐4), 385-386. [15] Southwell, W. H. (1991). Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces. JOSA A, 8(3), 549-553. [16] Wilson, S. J., & Hutley, M. C. (2010). The Optical Properties of 'Moth Eye' Antireflection Surfaces. Optica Acta: International Journal of Optics, 29(7), 993-1009. [17] Southwell, W. H. (1983). Gradient-index antireflection coatings. Optics letters, 8(11), 584-586. [18] Ji, S., Song, K., Nguyen, T. B., Kim, N., & Lim, H. (2013). Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. ACS Appl Mater Interfaces, 5(21), 10731-10737. [19] Hadobas, K., Kirsch, S., Carl, A., Acet, M., & Wassermann, E. (2000). Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology, 11(3), 161. [20] Oh, Y. J., Kim, J. J., & Jeong, K. H. (2014). Biologically inspired biophotonic surfaces with self-antireflection. Small, 10(13), 2558-2563.
|