[1]Z. C. He, H. B. Wu, Y. Cao, Recent Advances in Polymer Solar Cells: Realization of High Device Performance by Incorporating Water/AlcoholSoluble Conjugated Polymers as Electrode Buffer Layer, Advanced Materials, vol. 7, pp. 1006-1024, 2014.
[2]L. L. Kazmerski, Solar photovoltaics R&D at the tipping point: A 2005 technology overview, Journal of Electron Spectroscopy and Related Phenomena, vol. 2-3, pp. 105-135, 2006.
[3]W. Hoagland, Solar energy, Scientific American, vol.273, pp. 170-173, 1995
[4]N. R. E. Laboratory. Best Research-Cell Efficiencies.
[5]G. D. Niu, X. D. Guo, L. D. Wang, Review of recent progress in chemical stability of perovskite solar cells, Journal of Materials Chemistry, vol. 17, pp. 8970-8980, 2015.
[6]A. A. Sutanto, S. Lan, C. F. Cheng, S. B. Mane, H. P. Wu, M. Leonardus, M. y. Xie, S. C. Yeh, C. W. Tseng, C. T. Chen, E. W. G. Diau, C. H. Hung, Solvent-assisted crystallization via a delayed-annealing approach for highly efficient hybrid mesoscopic/planar perovskite solar cells, Solar Energy Materials and Solar Cells, vol.172, pp. 270-276, 2017.
[7]G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science, vol. 6156, pp. 344–347, 2013.
[8]H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R.
Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Scientific Reports, vol. 2, p. 591, 2012.
[9]D. Q. Bi, C. Y. Yi, J. S. Luo, J. D. Decoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Gratzel, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nature Energy, vol. 1, 16142, (2016).
[10]J. Choi, S. Song, M. T. Horantner, H. J. Snaith, T. Park, Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells, Acs Nana, vol. 6, pp. 6029-6036, 2016.
[11]D. Y. Liu, J. L. Yang, T. L. Kelly, J. Am. Chen. Soc, Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency, Journal of the American Chemical Society, vol. 49, pp. 17116-17122, 2014.
[12]C. Kirbiyik, K. Kara, D. A. Kara, M. Z. Yigit, B. Istanbullu, M. Can, N. S. Sariciftci, M. Scharber, M. Kus, Appl., Enhancing the c-TiO2 based perovskite solar cell performance via modification by a serial of boronic acid derivative self-assembled monolayers, Applied Surface Science, vol. 423, pp. 521-527, 2017.
[13]S. Jang, J. Yoon, K. Ha, M. C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, M. Choi, Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells, Nano Energy, vol. 22, pp. 499–506, 2016.
[14]D. B. Mitzi, Templating and structural engineering in organic-inorganic perovskites, Journal of the Chemical Society-Dalton Transactions, vol. 1, pp. 1-12, 2001.
[15]A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society, vol. 17, pp. 6050, 2009.
[16]C. Momblona, L. Gil-Escrig, E.Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H. J. Bolink, Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers, Energy & Environmental Science, vol.11, pp. 3456-3463, 2016.
[17]J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, Energ., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy & Environmental Science, vol.5, pp. 1602–1608, 2015.
[18]W. J. Ke, G. J. Fang, J. W. Wan, H. Tao, Q. Liu, L. B. Xiong, P. L. Qin, J. Wang, H. W. Lei, G. Yang, M. C. Qin, X. Z. Zhao, Y. F. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nature Communications, vol.6, p. 6700, 2015.
[19]T. Ye, S. L. Lim, X. Q. Li, M. Petrovic, X. Z. Wang, C. Y. Jiang, W. P. Goh, C. Vijila, S. Ramakrishna, Pinhole-free mixed perovskite film for bending durable mixed perovskite solar cells, Solar Energy Materials and Solar Cell, vol. 175, pp. 111-117, 2018.
[20]S. Mastroianni, F. D. Heinz, J. H. Im, W.Veurman, M. Padilla, M. C. Schubert, U. Wurfel, M. Gratzel, N. G. Park, A. Hinsch, Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging, Nanoscale, vol. 46, pp. 19653-19662, 2015.
[21]S. M. Kang, S. Jang, J. K. Lee, J. Yoon, D. E. Yoo, J. W. Lee, M. Choi, N. G. Park, Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells, Small, vol. 18, pp. 2443–2449, 2016.
[22]J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, R. J. Nicholas, Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells, Nano Letters, vol. 2, pp. 724-730, 2014.
[23]M. A. Henderson, W. S. Epling, C. L. Perkins, C. H. F. Peden, U. Diebold, Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: Molecular and dissociative channels, Journal of Physical Chemistry B, vol. 25, pp. 5328-5337, 1999.
[24]J. H. Park, J.Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, S. I. Seok, Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition, Advanced Materials, vol. 27, pp. 4013-4019, 2015.
[25]Y. Z. Wu, A. Islam, X. D. Yang, C. J. Qin, J. Liu, K. Zhang, W. Q. Peng, L. Y. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition, Energy & Environmental Science, vol. 9, pp. 2934-2938, 2014.
[26]Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, Journal of the Americal Chemical Society, vol. 2, pp. 622-625, 2014.
[27]J. A. Christians, R. C. M. Fung, P. V. Kamat, An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide, Journal of the Americal Chemical Society, vol. 2, pp. 758-764, 2014.
[28]H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science, vol. 6196, pp. 542-543, 2014.
[29]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nanowire dye-sensitized solar cells, Nature Materials, vol. 6, pp. 455-459, 2005.
[30]S. U. M. Khan, M. AI-Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, vol. 5590, pp. 2243-2245, 2002.
[31]An investigation of electrochemical impedance of TiO2-ZnO composite and TiO2-graphene composite in dye-sensitized solar cells, as photoanode.
[32]Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. B. He, Y. L. Cao, G. D. Yuan, H. S. Song, L. M. Chen, L. B. Luo, H. M. Cheng, W. J. Zhang, I. Bello, S. T. Lee, Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application, Acs Nano, vol. 6, pp. 3482-3488, 2010.
[33]J. Y. Lin, C. Y. Chan, S. W. Chou, Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells, Chemical Communications, vol. 14, pp. 1440-1442, 2013.
[34]A. Formento, L. Montanaro, M. V. Swain, Micromechanical Characterization of Electrophoretic‐Deposited Green Films, Journal of the Americal Ceramic Society, vol. 12, pp. 3521-3528, 1999.
[35]T. Jiang, Z. Zhang, Y. Zhou, Y. Liu, Z. W. Wang, H. Tong, X. Y. Shen, Y. N. Wang, Surface Functionalization of Titanium with Chitosan/Gelatin via Electrophoretic Deposition: Characterization and Cell Behavior, Biomacromolecules, vol. 5, pp. 1254-1260, 2010.
[36]S. Masaru, T. Katsujiro, M. Masafumi, E. Takao, Electrophoretic Deposition of Glass Powder for Passivation of High Voltage Transistors, Journal of the Electrochemical Society, vol. 132, pp. 393-398, 1985.
[37]H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D. R. Jung, B. Park, The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell, Current Applied Physics, vol. 3 pp. 737-741, 2012.
[38]I. Zhitomirsky, Electrophoretic Deposition of Chemically Bonded Ceramics in the System CaO-SiO2-P2O5, Journal of Materials Science Letters, vol. 24 pp. 2101-2104, 1998.
[39]呂宗昕,2003,圖解奈米科技與光觸媒,商周出版。
[40]陳政廷,2008,混合有機色素分子共增感對色素增感太陽電池光電轉換效率的影響 , 成功大學化學工程學系碩士論文。[41]M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, Journal of Physical Chemistry B, vol. 28, pp. 13872-13880, 2006.
[42]林政偉,2004,氧化鋅-鋁多層膜之結構與光電特性研究,國立成功大學光電科學與工程研究所碩士論文
[43]Brittany L. Oliva, Andrew R. Barron, “An Introduction to Solar Cell Technology (2008)
[44]陳昇卲,2010,含微孔性陶瓷膜於染料敏化太陽能電池性能之研究,長庚大學化工與材料工程學系碩士論文。[45]林明獻,2007,太陽能電池技術入門, 第二章.
[46]H. Koelmans, J. Th. G. Overbeek, Stability and electrophoretic deposition of suspensions in non-aqueous media, Discussions of the Faraday Society, vol. 18, pp. 52-63, 1954.
[47]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nature, Materials, vol. 9, pp. 897-903, 2014.
[48]Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, Y. B. Cheng, Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity, Journal of Materials Chemistry A, vol. 15, pp. 8139-8147, 2015.
[49]J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. Tang,W. H. Chang, Z. R. Houg, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nature Nanotechnology, vol. 1, pp. 75-81, 2016.
[50]E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. Christoforo, M. D. Mcgehee, Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells, Energy & Environmetal Science, vol. 11, pp. 3690-3698, 2014.
[51]N. Mohammadian, A. Moshaii, A. Alizadeh, S. Gharibzadeh,R. Mohammadpour, Influence of Perovskite Morphology on Slow and Fast Charge Transport and Hysteresis in the Perovskite Solar Cells, Journal,of Physical Chemistry Letters, vol. 22, pp. 4614-4612, 2016.
[52]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, vol. 6156, pp. 341-344, 2013.
[53]G. D. Niu, W. Z. Li, F. Q. Meng, L. D. Wang, H. P. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells, Journal of Materials, Chemistry A, vol. 3, pp. 705-710, 2014.
[54]W. Z. Li, J. L. Li, L. D. Wang, G. D. Niu, R. Gao, Y. Qiu, Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance, Journal of Materials, Chemistry A, vol. 38, pp. 11735-11740. 2013.