跳到主要內容

臺灣博碩士論文加值系統

(184.72.135.210) 您好!臺灣時間:2024/03/29 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:章孟琮
研究生(外文):Meng-Tsung Chang
論文名稱:以固化之雙層乳化液滴陣列實現介電濕潤顯示
論文名稱(外文):Electrowetting display with a curable double emulsion array
指導教授:范士岡
口試委員:陳賢燁陳國慶
口試日期:2016-08-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:光流體顯示器乳化液滴陣列結構電濕潤
外文關鍵詞:optofluidicsdisplayemulsionarray structureelectrowetting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗結合微流道(Microchannel)與介電濕潤(Electrowetting on dielectric,EWOD)兩種微流體技術建立顯示結構,並驗證其介電濕潤顯示之功能。目前的電濕潤顯示器以微機電製程建立像素結構,再進行液體的封填,本實驗目標為透過微流道技術將可使像素結構的建立與液體封填在一片微流體晶片中即可達成。策略為以微流道產生雙層乳化液滴陣列作為像素陣列,再以介電濕潤控制核心液滴的形狀,藉以達到顯示之功效。 我們以三種可固化液體作為乳化液滴結構之連續相(環境),分別為UV光固化之MD 700、PEGDA水溶液與熱固化之PDMS。以水溶液、油性液體作為分散相(液滴),搭配界面活性劑或長鏈高黏性液體分子特性使乳化液滴穩定堆疊,以形成陣列。 研究中先以單層乳化液滴陣列作為初步材料性質測試,再進行雙層乳化液滴陣列的實驗。 單層乳化液滴陣列實驗中建立了MD 700包覆水、PDMS包覆甘油水溶液、PDMS包覆Novec 7500與PEGDA水溶液包覆矽油,一共四種陣列結構,並以此結果進一步建立雙層乳化液滴陣列,其中以PEGDA水溶液為連續相,矽油為外層液滴,Novec 7500作為內層液滴形成之陣列結構排列最規則,並有良好的尺寸一致性。 將此陣列結構(單一乳化液滴直徑200 μm,高度150 μm)置於介電濕潤結構中,施以160 V,100 kHz 之交流電訊號可成功使核心液滴因介電濕潤而自球狀攤平,並在移除電壓後回復至初始狀態,驗證了以微流道結合介電濕潤達成顯示之功能。
We combined formation of double emulsions in microchannel and deformation of the inner droplet with electrowetting-on-dielectric (EWOD) to demonstrate an electrowetting display (EWD) avoiding sophisticated fabrication with the photolithography process and ink injection that current EWD faces. We used microfluidic emulsion to form the pixels and to pack the double emulsions in a single microfluidic chip with microchannels. The strategy was producing a double emulsion array with microchannels and controlling the shapes of the inner droplets by EWOD to achieve the display functionalities. Three curable liquids were adopted and investigated as the continuous phase of the double emulsion: UV curable MD 700, PEGDA, and thermally curable PDMS. The dispersed phases contained inner and outer droplets of immiscible fluids. The emulsions were stabilized by surfactants or the viscosity of the continuous phase composed of long-chain molecules. We first studied the creation of single emulsion arrays with four different combinations: water in MD 700, glycerin in PDMS, Novec 7500 in PDMS, and silicone oil in PEGDA. We further examined and succeeded to form double emulsion arrays that were uniformly and regularly arranged using PEGDA , silicone oil, and Novec 7500 as the continuous phase, outer droplet, and inner droplet, respectively. The emulsion array composed of outer droplets with diameter of 200 μm and height of 150 μm was actuated with EWOD by applying a 160 Vpp and 100 kHz AC signal. The inner droplets spread as voltage applied and recovered as voltage removed which demonstrated the function of a double emulsion electrowetting display.
致謝 I
中文摘要 II
ABSTRACT III
圖目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 微流體系統 2
1-2.1. 介電濕潤 2
1-2.2. 微流道 4
1-3 光流體系統 8
1-3.1 光學鏡與光圈 8
1-3.2 電子紙 14
1-4 研究目的 18
第二章 理論介紹 19
2-1 乳化液滴原理 19
2-1.1 乳化液滴的穩定性 20
2-1.2 介面活性劑 24
2-2 微流道原理 27
2-2.1 流道親疏水性 27
2-2.2 流道幾何設計 29
2-2.3 乳化液滴切分機制與毛細管數(capillary number, Ca) 37
2-3 介電濕潤理論 39
第三章 實驗架構、設備與製程 41
3-1 實驗藥品 41
3-1.1 乳化液滴系統液體 41
3-1.2 界面活性劑 43
3-1.3 染劑 46
3-2 實驗設計與架構 46
3-2.1 微流道系統 49
3-3 晶片製程 51
3-3.1 微流道製程 51
第四章 實驗結果與探討 56
4-1. 運用微流道產生乳化液滴 56
4-1.1 單層乳化液滴 56
4-1.2 雙層乳化液滴 61
4-2. 雙層乳化液滴陣列的介電濕潤現象 80
第五章 結論與未來展望 85
參考文獻 87
附錄 91
實驗藥品與設備規格 91
實驗藥品 91
實驗設備 91
[1] Lippmann, G. (1875). Relations entre les phénomènes électriques et capillaires (Doctoral dissertation, Gauthier-Villars).
[2] B. Berge, C.R. Acad. Sci. Paris, Série 2, 1993, 317, 157-163.
[3] Cho, S. K., Moon, H., & Kim, C. J. (2003). Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Microelectromechanical Systems, Journal of, 12(1), 70-80.
[4] Pollack, M. G., Fair, R. B., & Shenderov, A. D. (2000). Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 77(11), 1725-1726.
[5] Becker, H., & Heim, U. (2000). Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 83(1), 130-135.
[6] Zheng, B., Gerdts, C. J., & Ismagilov, R. F. (2005). Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Current opinion in structural biology, 15(5), 548-555.
[7] Song, H., Chen, D. L., & Ismagilov, R. F. (2006). Reactions in droplets in microfluidic channels. Angewandte chemie international edition, 45(44), 7336-7356.
[8] He, M., Edgar, J. S., Jeffries, G. D., Lorenz, R. M., Shelby, J. P., & Chiu, D. T. (2005). Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Analytical Chemistry, 77(6), 1539-1544.
[9] Dendukuri, D., Tsoi, K., Hatton, T. A., & Doyle, P. S. (2005). Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir, 21(6), 2113-2116.
[10] Nie, Z., Li, W., Seo, M., Xu, S., & Kumacheva, E. (2006). Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. Journal of the American Chemical Society, 128(29), 9408-9412.
[11] Tang, S. K., Li, Z., Abate, A. R., Agresti, J. J., Weitz, D. A., Psaltis, D., & Whitesides, G. M. (2009). A multi-color fast-switching microfluidic droplet dye laser. Lab on a Chip, 9(19), 2767-2771.
[12] Li, Z., Zhang, Z., Emery, T., Scherer, A., & Psaltis, D. (2006). Single mode optofluidic distributed feedback dye laser. Optics Express, 14(2), 696-701.
[13] Wolfe, D. B., Conroy, R. S., Garstecki, P., Mayers, B. T., Fischbach, M. A., Paul, K. E., ... & Whitesides, G. M. (2004). Dynamic control of liquid-core/liquid-cladding optical waveguides. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12434-12438.
[14] Kuiper, S., & Hendriks, B. H. W. (2004). Variable-focus liquid lens for miniature cameras. Applied physics letters, 85(7), 1128-1130.
[15] Tsai, C. G., & Yeh, J. A. (2010). Circular dielectric liquid iris. Optics letters, 35(14), 2484-2486.
[16] Li, L., Liu, C., Ren, H., & Wang, Q. H. (2013). Adaptive liquid iris based on electrowetting. Optics letters, 38(13), 2336-2338.
[17] Smith, N. R., Abeysinghe, D. C., Haus, J. W., & Heikenfeld, J. (2006). Agile wide-angle beam steering with electrowetting microprisms. Optics Express, 14(14), 6557-6563.
[18] Yang, H., Han, Y. H., Zhao, X. W., Nagai, K., & Gu, Z. Z. (2006). Thermal responsive microlens arrays. Applied physics letters, 89(11), 1121.
[19] Wan, Z., Zeng, H., & Feinerman, A. (2006). Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets. Applied physics letters, 89(20), 201107.
[20] Comiskey, B., Albert, J. D., Yoshizawa, H., & Jacobson, J. (1998). An electrophoretic ink for all-printed reflective electronic displays. Nature, 394(6690), 253-255.ISO 690
[21] http://www.eink.com
[22] http://www.macbookone.com/2010/06/sipix.html
[23] Liang, R. C., Hou, J., Zang, H., Chung, J., & Tseng, S. (2003). Microcup® displays: Electronic paper by roll‐to‐roll manufacturing processes. Journal of the Society for Information Display, 11(4), 621-628.
[24] https://www.qualcomm.com/products/mirasol/technology
[25] Hayes, Robert A., and B. J. Feenstra. "Video-speed electronic paper based on electrowetting." Nature 425.6956 (2003): 383-385.
[26] http://www.printedelectronicsworld.com/articles/5183/on-a-roll-why-e-ink-is-still-the-leader-in-e-paper
[27] Tadros, T. F. Emulsion Formation, Stability, and Rheology. Emulsion Formation and Stability, 1-75.
[28] Shields, M., Ellis, R., & Saunders, B. R. (2001). A creaming study of weakly flocculated and depletion flocculated oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178(1), 265-276.
[29] Wooster, T. J., Golding, M., & Sanguansri, P. (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 24(22), 12758-12765.
[30] Myers, D. (2005). Surfactant science and technology. John Wiley & Sons.
[31] Aulton, M. E. (2002). Pharmaceutics: The science of dosage form design. Churchill livingstone.
[32] Schubert, H., & Engel, R. (2004). Product and formulation engineering of emulsions. Chemical Engineering Research and Design, 82(9), 1137-1143.
[33] Walstra, P. (1993). Principles of emulsion formation. Chemical Engineering Science, 48(2), 333-349.
[34] Preziosi, V., Perazzo, A., Caserta, S., Tomaiuolo, G., & Guido, S. (2013). Phase inversion emulsification. Chemical Engineering Transactions, 32, 1585-1590.
[35] McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297-2316.
[36] Fernandez, P., André, V., Rieger, J., & Kühnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251(1), 53-58.
[37] Anton, N., Gayet, P., Benoit, J. P., & Saulnier, P. (2007). Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. International Journal of Pharmaceutics, 344(1), 44-52.
[38] Shui, L., van den Berg, A., & Eijkel, J. C. (2009). Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Lab on a Chip, 9(6), 795-801.
[39] Bhattacharya, S., Datta, A., Berg, J. M., & Gangopadhyay, S. (2005). Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Microelectromechanical Systems, Journal of, 14(3), 590-597.
[40] Collins, D. J., Neild, A., Liu, A. Q., & Ai, Y. (2015). The poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab on a Chip, 15(17), 3439-3459.
[41] Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., & Weitz, D. A. (2005). Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), 537-541.
[42] Chu, L. Y., Utada, A. S., Shah, R. K., Kim, J. W., & Weitz, D. A. (2007). Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 46(47), 8970-8974.
[43] Thorsen, T., Roberts, R. W., Arnold, F. H., & Quake, S. R. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Physical review letters, 86(18), 4163.
[44] Okushima, S., Nisisako, T., Torii, T., & Higuchi, T. (2004). Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 20(23), 9905-9908.
[45] Ganán-Calvo, A. M., & Gordillo, J. M. (2001). Perfectly monodisperse microbubbling by capillary flow focusing. Physical review letters, 87(27), 274501.
[46] Anna, S. L., Bontoux, N., & Stone, H. A. (2003). Formation of dispersions using “flow focusing” in microchannels. Applied physics letters, 82(3), 364-366.
[47] Hashimoto, M., Garstecki, P., & Whitesides, G. M. (2007). Synthesis of Composite Emulsions and Complex Foams with the use of Microfluidic Flow‐Focusing Devices. Small, 3(10), 1792-1802.
[48] De Menech, M., Garstecki, P., Jousse, F., & Stone, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. journal of fluid mechanics, 595, 141-161.
[49] Christopher, G. F., Noharuddin, N. N., Taylor, J. A., & Anna, S. L. (2008). Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 78(3), 036317.
[50] http://www.scbt.com/datasheet-260906-3-ethoxyperfluoro-2-methylhexane.html
[51] Wisser, F. M., Schumm, B., Mondin, G., Grothe, J., & Kaskel, S. (2015). Precursor strategies for metallic nano-and micropatterns using soft lithography. Journal of Materials Chemistry C, 3(12), 2717-2731.
[52] Pitto-Barry, A., & Barry, N. P. (2014). Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances.Polymer Chemistry, 5(10), 3291-3297.
[53] http://www.sigmaaldrich.com/
[54] https://www.google.com/patents/US7116467
[55] Holtze, C., Rowat, A. C., Agresti, J. J., Hutchison, J. B., Angile, F. E., Schmitz, C. H. J., ... & Johnson, J. S. (2008). Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on a Chip, 8(10), 1632-1639.
[56] "Hydrophobic and lyophobic coating"Zhang, H., & Lamb, R. N. (2005). U.S. Patent Application No. 11/576,787.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top