|
[1]Carnegie Mellon University, “The ‘Only’ Coke Machine on the Internet,” 1982. [Online]. Available: https://www.cs.cmu.edu/~coke/history_long.txt. [Accessed: 28-Apr-2018]. [2]Kevin Ashton, “That ‘Internet of Things’ Thing,” 2009. [Online]. Available: http://www.rfidjournal.com/articles/view?4986. [Accessed: 28-Apr-2018]. [3]楊德華, “台灣工具機產業的回顧與展望,” 機械資訊 592 期, 2017. [Online]. Available: http://www.tami.org.tw/print/592/592_02.htm. [Accessed: 28-Apr-2018]. [4]Renishaw, “XR20-W 旋轉軸校正儀,” 2012. [Online]. Available: http://www.renishaw.com.tw/tw/xr20-w-rotary-axis-calibrator--15763. [Accessed: 29-Apr-2018]. [5]“自動視準儀 Digital 2000,” 2009. [Online]. Available: http://www.join-star.com.tw/joinstar2_3.asp?num=617. [Accessed: 29-Apr-2018]. [6]Renishaw, “QC20-W 循圓測試儀系統,” 2010. [Online]. Available: http://www.renishaw.com.tw/tw/qc20-w-ballbar-system--11075. [Accessed: 29-Apr-2018]. [7]M.Wang, J.-Z.Hu, T.Zan, andR.-Y.Fei, “Research on modeling and measurement technique of kinematic error particular to 5-axis NC machining tool,” Beijing Gongye Daxue Xuebao / J. Beijing Univ. Technol., vol. 36, no. 4, 2010. [8]T.Erkan andJ. R. R.Mayer, “A cluster analysis applied to volumetric errors of five-axis machine tools obtained by probing an uncalibrated artefact,” CIRP Ann. - Manuf. Technol., vol. 59, no. 1, pp. 539–542, 2010. [9]S.SAKAMOTO, I.INASAKI, H.TSUKAMOTO, andT.ICHIKIZAKI, “Identification of Alignment Errors in Five-Axis Machining Centers Using Telescoping Ball Bar.,” Trans. Japan Soc. Mech. Eng. Ser. C, vol. 63, no. 605, pp. 262–267, 1997. [10]M. S.Uddin, S.Ibaraki, A.Matsubara, andT.Matsushita, “Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors,” Precis. Eng., vol. 33, no. 2, pp. 194–201, 2009. [11]S.Ibaraki, Y.Kakino, T.Akai, N.Takayama, I.Yamaji, andK.Ogawa, “Identification of motion error sources on five-axis machine tools by ball-bar measurements (1st Report) - Classification of motion error components and development of the modified ball bar device (DBB5),” Seimitsu Kogaku Kaishi/Journal Japan Soc. Precis. Eng., vol. 76, no. 3, pp. 333–337, 2010. [12]J. M.Lai, J. S.Liao, andW. H.Chieng, “Modeling and analysis of nonlinear guideway for double-ball bar (DBB) measurement and diagnosis,” Int. J. Mach. Tools Manuf., vol. 37, no. 5, pp. 687–707, 1997. [13]W. T.Lei andY. Y.Hsu, “Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part I: Design and modeling,” Int. J. Mach. Tools Manuf., vol. 42, no. 10, pp. 1153–1162, 2002. [14]S.Weikert andW.Knapp, “R-test, a new device for accuracy measurements on five axis machine tools,” CIRP Ann. - Manuf. Technol., vol. 53, no. 1, pp. 429–432, 2004. [15]S.Ibaraki, C.Oyama, andH.Otsubo, “Measurement and compensation of motion errors on 5-axis machine tool by R-test,” pp. 841–842, 2009. [16]S.Ibaraki andY.Ota, “A Machining Test to Evaluate Geometric Errors of Five-axis Machine Tools with its Application to Thermal Deformation Test,” Procedia CIRP, vol. 14, pp. 323–328, Jan.2014. [17]ISO 10791-6, “Test conditions for machining centres-Part 6:Accuracy of speeds and interpolations.” 2014. [18]ISO 230-1, “Test code for machine tools -- Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions.” 2012. [19]ISO 230-7, “Test code for machine tools -- Part 7: Geometric accuracy of axes of rotation.” . [20]OSI Optoelectronics, “Segmented Photodiodes,” 2013. [Online]. Available: http://www.osioptoelectronics.com/standard-products/silicon-photodiodes/position-sensing-detectors/segmented-photodiodes.aspx. [Accessed: 04-May-2018]. [21]OSI Optoelectronics, “Tetra Lateral PSDs,” 2013. [Online]. Available: http://www.osioptoelectronics.com/standard-products/silicon-photodiodes/position-sensing-detectors/tetra-lateral-psds.aspx. [Accessed: 04-May-2018]. [22]OSI Optoelectronics, “Duo Lateral PSDs,” 2013. [Online]. Available: http://www.osioptoelectronics.com/standard-products/silicon-photodiodes/position-sensing-detectors/duo-lateral-psds.aspx. [Accessed: 04-May-2018]. [23]Microchip Technology, “PIC32MX Family | Microchip Technology.” [Online]. Available: http://www.microchip.com/design-centers/32-bit/pic-32-bit-mcus/pic32mx-family. [Accessed: 30-May-2018]. [24]Microchip Technology, “SAM G MCUs | Microchip Technology.” [Online]. Available: https://www.microchip.com/design-centers/32-bit/sam-32-bit-mcus/sam-g-mcus. [Accessed: 30-May-2018]. [25]Microchip Technology, “PIC32MM0064GPL036 - 32-bit PIC Microcontrollers - Microcontrollers and Processors.” [Online]. Available: https://www.microchip.com/wwwproducts/en/PIC32MM0064GPL036. [Accessed: 01-Jun-2018]. [26]Microchip Technology, “MCP1703.” [27]Microchip Technology, “TC1262.” [28]Texas Instruments Incorporated, “BQ24075.” [29]Texas Instruments Incorporated, “TPS61089, TPS610891 TPS61089x 12.6-V, 7-A Fully-Integrated Synchronous Boost Converters in 2.0-mm x 2.5-mm VQFN Package.” [30]Microchip Technology, “SAM G55G.” [31]G.Wang, Y.Wei, andS.Qiao, Generalized inverses : theory and computations. Beijing: Science Press, 2004. [32]百德機械股份有限公司, “UX300.” [Online]. Available: http://www.quaser.com/tw/products.php?mode=proDetail&cid=1481260229&pid=1480471683&topcid=1481260229. [Accessed: 24-Jun-2018].
|