參考文獻
1. 吳宗正,回歸分析,三民書局,台北(1993)。
2. 林茂文,時間數列分析與預測,華泰書局,台北(1992)。
3. 林聰明,吳水丕,指數平滑法之選擇與應用,華泰書局,台北(1971)。
4. 時巧煒,「來華觀光旅客需求預測模式建立之研究」,國立政治大學統計研究所碩士論文,台北(1994) 。5. 黃傳欽,「台灣地區白肉雞產地價格組合預測方法之研究」,嘉義農專學報,第32期,1993,pp. 121-142。6. 葉怡成,類神經網路模式應用與實作,儒林出版社,台北(1998)。
7. 葉怡成,應用類神經網路,儒林出版社,台北(1997)。
8. 劉亭宜,「GRNN在晶圓製造裡良率模式之建構與分析」,私立元智大學工業工程研究所碩士論文,中壢(2000) 。9. Disorntetiwat, P. and C. H. Dagli, “Simple Ensemble-averaging Model Based on Reneralized Regression Neural Network in Financial Forecasting Problems,” Adaptive Systems for Signal Processing, Communications and Control Symposium 2000 IEEE AS-SPCC, 2000, pp. 477—480.
10. Dong, J., “Reseach on the Method of Non-linear Combining Forecasting Based on Fuzzy Neural System,” Proceedings. of the 3th World Congress on Intelligent and Automation, 2000, pp. 899-903.
11. Frost, F. and V. Karri, “Performance Comparison of BP and GRNN Models of the Neural Network Paradigm Using a Practical Industrial Application,” Proceedings. of ICONIP 1999 6th International Conference on Neural Information, Vol. 3, 1999, pp. 1069-1074.
12. James, T. L., O. R. Jens and S. Brian, “A Hybrid Econometric-neural Network Modeling Approach for Sales Forecasting,” Tourism Management, Vol. 27, 1996, pp. 175-192.
13. Kim, Y. S, B. J. Yum and M. Kim, “A Hybrid Model of Partial Squares and Artificial Neural Network for Analyzing Process Monitoring Data,” 2000 IEEE, 2001, pp. 2292-2297.
14. Lee, K. C., I. Han and Y. Kwon, “Hybrid Neural Network Model for Bankruptcy Predictions,” Decision Support Systems, Vol. 18, 1996, pp. 63-72
15. Leung, M. T., A. S. Chen and H. Daouk, “Forecasting Exchange Rates using General Regression Neural Networks,” Computers & Operations Research, Vol. 27, 2000, pp.1093-1110.
16. Masters, T., W. H. Land, Jr., J. Y. Lo and D. W. McKee, “Application of Evolutionary Computation and Neural Network Hybrids for Breast Cancer Classification Using Mammogram and History Data,” Proceedings of the 2001 IEEE Congress on Evolutionary Computation, Vol. 2, 2001, pp. 1147-1154.
17. Patton, J. B. and J. Ilic, “Identification of Static Distribution Load Parameters Using General Regression Neural Networks,” Proceedings of the 36th Midwest Symposium on Circuits and Systems, Vol. 2, 1993, pp.1023-1026.
18. Shi, M. S., D. X. Li and B. Liu,“Improving the Accuracy of Non-linear Combined Forecasting Using Neural Networks,”Expert Systems with Applications, Vol. 16, 1999, pp. 49-54.
19. Specht, D. F.,“A General Regression Neural Network,”IEEE Transactions on Neural Networks, 1991, pp. 568-576.
20. Yu, S. and L. Guan, “Feature Selection Using General Regression Neural networks for the Automatic Detection of Clustered Microcalcifications,” Proceedings of the 1999 IEEE International Conference on Acoustics Speech and Signal, Vol. 2, 1999, pp. 1101—1104.