|
[1]A. Bakker and J. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. New York, NY, USA: Springer, 2001. [2]K. N. Leung and P. K.T. Mok, “A sub-1-v 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE Journal of Solid-State Circuits, vol. 37, no. 4, pp. 526-630, Apr. 2002. [3]K. N. Leung, P. K. T. Mok, and C. Y. Leung, “A 2-v 23-μA 5.3-ppm/°C curva-ture-compensated CMOS bandgap voltage reference,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 561-564, Mar. 2003. [4]J. Sheng, Z. Chen, and B. Shi, “A 1v supply area effective CMOS bandgap reference,” International Conference on ASIC, 2003.Proceedings, vol. 1, pp. 619-622, Oct. 2003. [5]X. Ming, Y. Q. Ma, Z. K. Zhou, and B. Zhang, “A high-precision compensated cmos bandgap voltage reference without resistors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 10, pp. 767-771, Oct. 2010. [6]J. H. Li, X. B. Zhang and M. Y. Yu, “A 1.2-v piecewise curvature-corrected bandgap ref-erence in 0.5μm CMOS process,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 19, no. 6, pp. 1118-1122, Jun. 2011. [7]Z. K. Zhou, Y. Shi, Z. Huang, P. S. Zhu, Y. Q. Ma, Y. C. Wang, Z. Chen, X. Ming and B. Zhang “A 1.6-v 25-μA 5-ppm/°C curvature-compensated bandgap reference,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 4, pp. 677-684, Apr. 2012. [8]C. M. Andreou, S. Koudounas and J. Georgiou, “A novel wide-temperature-range, 3.9 ppm/°C CMOS bandgap reference circuit,” IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 574-581, Nov. 2012. [9]B. Ma and F. Yu, “A novel 1.2–v 4.5-ppm/°C curvature-compensated cmos bandgap ref-erence,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp. 1026-1035, Apr. 2014. [10]Q. Duan, and J. Roh, “A 1.2–v 4.2-ppm/°C high-order curvature-compensated CMOS bandgap reference,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 3, pp. 662-670, Mar. 2015. [11]H. M. Chen, C. C. Lee, S. H. Jheng, W. C. Chen, and B. Y. Lee, “A sub-1 ppm/°C preci-sion bandgap reference with adjusted-temperature-curvature compensation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 6, pp. 1308-1317, Jun. 2017. [12]P. Malcovati, F. Maloberti, C. Fiocchi, and M. Pruzzi, “Curvature-compensated bicmos bandgap with 1-v supply voltage,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1076-1081, Jul. 2001. [13]A. B. Gomez, T. L. Viswanathan, and T. R. Viswanathan, “A low-supply-voltage cmos sub-bandgap reference,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 7, pp. 609-613, Jul. 2008. [14]J. M. Redoute, and M. Steyaert, “Kuijk bandgap voltage reference with high immunity to emi,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 2, pp. 75-79, Feb. 2010. [15]L. Magnelli, F. Felice, P. Corsonello, C. Pace, and G. Iannaccone, “A 2.6nw, 0.45 v tem-perature-compensated subthreshold cmos voltage reference,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 465-474, Feb. 2011. [16]R. Argones, J. Oliver, and C. Ferrer, “Very low power supply dependence roic for capaci-tive sensing platforms,” IEEE Sensors Journal, vol. 14, no. 4, Apr. 2014. [17]K. K. Lee, T. S. Lande, and P. D. Hafliger, “A sub-μw bandgap reference circuit with an inherent curvature-compensation property,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 1-9, Jan. 2015. [18]C. Yu and L. Siek, “An area-efficient current-mode bandgap reference with intrinsic ro-bust start-up behavior,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 10, pp. 937-941, Oct. 2015. [19]J. Jiang, W. Shu, and J. S. Chang, “A 5.6 ppm/°C temperature coefficient, 87-db psrr, sub-1-v voltage reference in 65-nm cmos exploiting the zero-temperature-coefficient point,” IEEE Journal of Solid-State Circuits, vol. 52, pp. 623-633, Mar. 2017. [20]C. Y. Leung,P. K. T. MOK and K. N. Leung, “A 1-V integrated current-mode boost con-verter in standard 3.3/5-V CMOS technologies, ”IEEE Journal, Solid-State Circuits, vol. 40,no. 11,pp. 2265-2274,2005. [21]X. Jing and P. K. T. Mok, “A fast fixed-frequency adaptive-on-time boost converter with light load efficiency enhancement and predictable noise spectrum,” IEEE J. Solid-State Circuits, vol. 48, no.10, pp. 2442–2456, Oct. 2013. [22]B. Sahu and G.A. Rincon-Mora. “An accurate, low-voltage, CMOS switching power sup-ply with adaptive on-time pulse-frequency modulation (PFM) control.” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, pp.312-321, No.2, Feb. 2007. [23]Y. Gao, S. Wang, H. Li, L. Chen, S. Fan and L. Geng, “A novel zero-current-detector for DCM operation in synchronous converter, ” IEEE International Symposium on Industrial Electronics (ISIE), pp.99-104, May 2012. [24]H. M. Chen, H. C. Huang, S. H. Jheng, H. T. Huang, and Y. S. Huang, "High-Efficiency PFM Boost Converter with an Accurate Zero Current Detector." IEEE Transactions on Circuits and Systems II, 2017. [25]H. H. Wu, C. L. Wei, and Y. C. Hsu, “Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter with a Near-Threshold Startup Voltage and High Efficiency,” IEEE Trans. Power Electron, vol. 30, no. 4, pp. 1956-1965,April 2015. [26]Jung, Dong-Hoon, et al. "0.293-mm2 Fast Transient Response Hysteretic Quasi-V2 DC–DC Converter with Area-Efficient Time-Domain-Based Controller in 0.35-μm CMOS." IEEE Journal of Solid-State Circuits, vol.53, no.6, pp. 1844-1855, 2018. [27]W. Fu, S. T. Tan, M. Radhkrishnan, R. Byrd, and A. A. Fayed, “A DCMonly buck regu-lator with hysteretic-assisted adaptive minimum-on-time control for low-power microcon-trollers,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 418–429, Jan. 2016. [28]Y. Hwang, A. Liu, Y. Chang, and J. Chen, “A high-efficiency fast-transient-response buck converter with analog-voltage-dynamicestimation techniques,” IEEE Trans. Power Elec-tron., vol. 30, no. 7, pp. 3720–3730, Jul. 2014. [29]J. J. Chen, Y. S. Hwang, J. H. Yu, Y. T. Ku and C. C. Yu, “A Low-EMI Buck Converter Suitable for Wireless Sensor Networks With Spur-Reduction Techniques,” IEEE Sensors J., vol. 16, no. 8, pp. 2588-2597, April 15, 2016.
|