|
[1].Druzhinina, I., & Kubicek, C. P. (2005). Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B, 6(2), 100-112. [2].羅朝村、謝建元。 2005。 “菌海戰術-有益木黴菌的應用”科學發展第 391 期:第34-39頁。 [3].Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787–799. [4].Ghisalberti, E. L., & Sivasithamparam, K. (1991). Antifungal antibiotics produced by Trichoderma spp. Soil Biology and Biochemistry, 23(11), 1011-1020. [5].Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8), 709-714. [6].Contreras-Cornejo, H. A., Macías-Rodríguez, L., Beltrán-Peña, E., Herrera-Estrella, A., & López-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant signaling & behavior, 6(10), 1554-1563. [7].Woo, S. L., Scala, F., Ruocco, M., & Lorito, M. (2006). The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology, 96(2), 181-185. [8].Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43-56. [9].Lotan, T., & Fluhr, R. (1990). Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiology, 93(2), 811-817. [10].Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R., & Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Molecular plant-microbe interactions, 19(8), 838-853. [11].Krause, M. S., Madden, L. V., & Hoitink, H. A. (2001). Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown and root rot of poinsettia. Phytopathology, 91(11), 1116-1123. [12].Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. [13].Sivan, A., & Chet, I. (1989). The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology, 79(2), 198-203. [14].Kottb, M., Gigolashvili, T., Großkinsky, D. K., & Piechulla, B. (2015). Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Frontiers in microbiology, 6, 995-995. [15].REBUFFAT, S., HAJJI, M., HENNIG, P., DAVOUST, D., & BODO, B. (1989). Isolation, sequence, and conformation of seven trichorzianines from Trichoderma harzianum. Chemical Biology & Drug Design, 34(3), 200-210. [16].Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. Journal of Bacteriology, 178(21), 6382-6385. [17].Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian journal of microbiology, 52(4), 522-529. [18].Gruber, S., & Zeilinger, S. (2014). The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride. PloS one, 9(10), e111636. [19].林彥君. (2014). 高溫和高鹽逆境影響阿拉伯芥 SUMO 喪失功能突變株之生長與 SUMO-conjugated 蛋白圖譜變化. 中興大學生命科學系所學位論文, 1-80. [20].Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in plant science, 11(1), 15-19. [21].Chinnusamy, V., Schumaker, K., & Zhu, J. K. (2004). Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of experimental botany, 55(395), 225-236. [22].Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant physiology, 130(3), 1143-1151. [23].Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620. [24].Liu, J., Feng, L., Li, J., & He, Z. (2015). Genetic and epigenetic control of plant heat responses. Frontiers in plant science, 6, 267-267.. [25].Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684. [26].Vollenweider, P., & Günthardt-Goerg, M. S. (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution, 137(3), 455-465. [27].Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science, 4, 273-273. [28].Kondamudi, R., Swamy, K. N., Chakravarthy, D. V. N., Vishnuprasanth, V., Rao, Y. V., Rao, P. R., ... & Voleti, S. R. (2012). Heat Stress in Rice–Physiological Mechanisms and Adaptation Strategies. In Crop Stress and its Management: Perspectives and Strategies (pp. 193-224). Springer Netherlands. [29].Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138(2), 882-897. [30].Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, cell & environment, 31(1), 11-38. [31].Ahmad, A., Diwan, H., & Abrol, Y. P. (2009). Global climate change, stress and plant productivity. In Abiotic Stress Adaptation in Plants (pp. 503-521). Springer Netherlands. [32].Farooq, M., Basra, S. M. A., Wahid, A., Cheema, Z. A., Cheema, M. A., & Khaliq, A. (2008). Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 194(5), 325-333. [33].Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment, 25(2), 163-171. [34].Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223. [35].Rivero, R. M., Ruiz, J. M., Garcıa, P. C., Lopez-Lefebre, L. R., Sánchez, E., & Romero, L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160(2), 315-321. [36].Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In Abiotic Stress in Plants-Mechanisms and Adaptations. 21-38. [37].吳正宗 (2001) 鹽害土壤的診斷與改良。興大農業第36期 [38].Zhu, J. K. (2001). Plant salt tolerance. Trends in plant science, 6(2), 66-71. [39].Flors, V., Paradís, M., García-Andrade, J., Cerezo, M., González-Bosch, C., & García-Agustín, P. (2007). A tolerant behavior in salt-sensitive tomato plants can be mimicked by chemical stimuli. Plant signaling & behavior, 2(1), 50-57. [40].Romero-Aranda, R., Soria, T., & Cuartero, J. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160(2), 265-272. [41].Volkmar, K. M., Hu, Y., & Steppuhn, H. (1998). Physiological responses of plants to salinity: a review. Canadian journal of plant science, 78(1), 19-27. [42].Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., & Luo, H. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiology, 161(3), 1375-1391. [43].Ghosh, D., & Xu, J. (2014). Abiotic stress responses in plant roots: a proteomics perspective. Frontiers in plant science, 5, 6. [44].Galvan-Ampudia, C. S., & Testerink, C. (2011). Salt stress signals shape the plant root. Current opinion in plant biology, 14(3), 296-302. [45].Zhang, J., Yu, H., Zhang, Y., Wang, Y., Li, M., Zhang, J., ... & Li, Z. (2016). Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. Journal of experimental botany, 67(5), 1339-1355. [46].Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of botany, 115(3), 327-331. [47].Plant, Á. L., Cohen, A., Moses, M. S., & Bray, E. A. (1991). Nucleotide sequence and spatial expression pattern of a drought-and abscisic acid-induced gene of tomato. Plant Physiology, 97(3), 900-906. [48].Tal, M., Imber, D., Erez, A., & Epstein, E. (1971). Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. Plant Physiol, 47, 849-850. [49].Cuartero, J., & Fernández-Muñoz, R. (1998). Tomato and salinity. Scientia Horticulturae, 78(1), 83-125. [50].de Azevedo, A. M., De Marco, J. L., & Felix, C. R. (2000). Characterization of an amylase produced by a Trichoderma harzianum isolate with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. FEMS microbiology letters, 188(2), 171-175. [51].Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277-285. [52].Poosapati, S., Ravulapalli, P. D., Tippirishetty, N., Vishwanathaswamy, D. K., & Chunduri, S. (2014). Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus, 1(3), 1-11. [53].Guo, R., Wang, Z., Huang, Y., Fan, H., & Liu, Z. (2018). Biocontrol potential of saline-or alkaline-tolerant Trichoderma asperellum mutants against three pathogenic fungi under saline or alkaline stress conditions. Brazilian Journal of Microbiology. [54].Ruijter, G. J., Bax, M., Patel, H., Flitter, S. J., van de Vondervoort, P. J., de Vries, R. P., & Visser, J. (2003). Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic cell, 2(4), 690-698. [55].Gal-Hemed, I., Atanasova, L., Komon-Zelazowska, M., Druzhinina, I. S., Viterbo, A., & Yarden, O. (2011). Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 5100-5109. [56].Gunde-Cimerman, N., Ramos, J., & Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycological research, 113(11), 1231-1241. [57].Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., & Shinmyo, A. (2000). Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant physiology, 122(4), 1239-1248. [58].Mastouri, F. (2010). Use Of Trichoderma Spp. To Improve Plant Performance Under Abiotic Stresses. [59].Mayo, S., Gutiérrez, S., Malmierca, M. G., Lorenzana, A., Campelo, M. P., Hermosa, R., & Casquero, P. A. (2015). Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in plant science, 6, 685-685.
|