|
[1]Altintas, Y., Verl, A., Brecher, C., Uriarte, L. And Pritschow, G. (2011), Machine tool feed drives, CIRP Annals, Vol.60, No.2, pp.779–796. [2]Chang, K.-H. (2015), Motion Analysis, e-Design, pp.391–462. [3]Chang, K.-H. (2015), Virtual machining, e-Design, pp.599–646. [4]Chang, K.-H. (2015), Optimum design, e-Design, pp.907–1000. [5]Xu, N., Tang, W., Chen, Y., Bao, D., & Guo, Y. (2015), Modeling analysis and experimental study for the friction of a ball screw, Mechanism and Machine Theory, Vol.8, pp.57-69. [6]Chen, C. L., Jang, M. J., & Lin, K. C. (2004), Modeling and high-precision control of a ball-screw-driven stage, Precision Engineering, Vol.28, No.4, pp.483–495. [7]Uriarte, L., Zatarain, M., Axinte, D., Yagüe-Fabra, J., Ihlenfeldt, S., Eguia, J., & Olarra, A. (2013), Machine tools for large parts, CIRP Annals. Vol.62, No.2, pp.731-750. [8]Lee, W., Kim, S. H., Park, J., & Min, B.-K. (2017), Simulation-based machining condition optimization for machine tool energy consumption reduction, Journal of Cleaner Production, Vol.150, pp.352-360. [9]Zhang, J., Zhang, H., Du, C., & Zhao, W. (2016), Research on the dynamics of ball screw feed system with high acceleration, International Journal of Machine Tools and Manufacture, Vol.111, pp.9–16. [10]Brecher, C., Eßer, B., Falker, J., Kneer, F., & Fey, M. (2018), Modelling of ball screw drives rolling element contact characteristics, CIRP Annals, Vol.67, No.1, pp.409–412. [11]Yuan Lin, C., Pin Hung, J., & Liang Lo, T. (2010), Effect of preload of linear on dynamic characteristics of vertical column-spindle system, International Journal of Machine Tools & Manufacture, Vol.50, No.8, pp.741–746. [12]Shabana, A. A. (2001), Computational Dynamics, (2nd Edition), New York: John Wiley & Sons, Inc. [13]Jönsson, A., Wall, J., & Broman, G. (2005), A virtual machine concept for real-time simulation of machine tool dynamics, International Journal of Machine Tools & Manufacture, Vol.45, No.7-8, pp.795–801. [14]Horváth, L., & Rudas, I. J. (2004), Finite Element and Manufacturing Process Models, Modeling and Problem Solving Techniques for Engineers, pp.183-219. [15]https://functionbay.com/en/page/single/60/recurdyn-multi-flexible-body-dynamics [16]Ossa, E. A., & Paniagua, M. (2016), Suspension and landing gear failures, Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, pp.167-190. [17]Norman, S.C. (1988), Aircraft Landing Gear Design: Principles and Practices American Institute of Aeronautics and Astronautics, Inc., Washington D.C., pp.75-128. [18]Wang, H., Xing, J. T., Price, W. G., & Li, W. (2008), An investigation of an active landing gear system to reduce aircraft vibrations caused by landing impacts and runway excitation, Journal of Sound and Vibration,Vol.317, No.1-2, pp.50-66. [19]Clarence, W.de Silva (2007), Vibration Damping Control and Design, New York: CRC Press Taylor&Francis Group. [20]Asi, O., & Yeşil, Ö. (2013), Failure analysis of an aircraft nose landing gear piston rod end, Engineering Failure Analysis, Vol.32, pp.283–291. [21]Lok, S. K., Paul, J. M., & Upendranath, V. (2014), Prescience Life of Landing Gear using Multiaxial Fatigue Numerical Analysis, Procedia Engineering, Vol.86, pp.775 – 779. [22]Kim, H.-W., & Yoo, W.-S. (2013), MBD applications in design, International Journal of Non-Linear Mechanics, Vol.53, pp.55–62. [23]Zhao, H., Wang, G., Wang, H., Bi, Q., & Li, X. (2017), Fatigue life analysis of crawler chain link of excavator, Engineering Failure Analysis, Vol.79, pp.737–748. [24]BERKOVITS, A., & FANG, D. (1993), An analytical master curve for Goodman diagram data, International Journal of Fatigue, Vol.15, No.3, pp.173-180. [25]Shabana, A. A. (1991), Theory of Vibration An introduction, (2nd edition), New York:Springer-Verlag. [26]Adrian, P. Mouritz (2012), Introduction to Aerospace, Fatigue of aerospace materials (Woodhead), pp.469-497. [27]Quantifying Fatigue Failure, Stress-Life Method for Non-Zero Mean Stress (Failure Surface= “Goodman Diagram”), MICHIGAN STATE UNIVERSITY, COLLEGE OF ENGINEERING. [28]Shabana, A A. (2005), Dynamics of multibody systems, (3rd Edition), New York: CAMBRIDGE UNIVERSITY PRESS. [29]Altintas Y., Brecher C., Weck M., & Witt S. (2005), Virtual Machine Tool, CIRP Annals, Vol.54, No.2, pp.115–138. [30]Dr. Sushila Rani (2018), MODAL ANALYSIS OF CANTILEVER BEAM TO DETECT FAILURE ZONE, IJESRT, Vol.7, No.4, pp.124–129. [31]Ashish R. Sonawane and Poonam S. Talmale (2017), Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA and Experimental, IRJET, Vol.04, No.8, pp.264–269. [32]Chang, K.-H. (2015), Introduction to e-Design, e-Design, pp.1–37. [33]Blundell, M., & Harty, D. (2004), Multibody systems simulation software, The Multibody Systems Approach to Vehicle Dynamics, pp.75–130. [34]Anderl, R., & Binde, P. (2018), Motion (Multibody Dynamics), Simulations with NX / Simcenter 3D, pp.11–80. [35]Anderl, R., & Binde, P. (2014), Design-Simulation FEM (Nastran) Simulations with NX, pp.79–148. [36]Anderl, R., & Binde, P. (2014), Advanced Simulation (FEM), Simulations with NX, pp.149–270. [37]Younis, W. (2010), The Stress Analysis Environment, Up and Running with Autodesk Inventor Simulation 2011, pp.235–275. [38]Blundell, M., & Harty, D. (2004), Modelling and analysis of suspension systems. The Multibody Systems Approach to Vehicle Dynamics, pp.131–247. [39]You, B., Liang, D., Gao, Z., Sun, Y., Hao, P., Wen, J., & Zhao, Y. (2019), Dynamics modeling of flexible multibody structure for a spacecraft mechanism with nonlinear factors, Precision Motion Systems, pp.217–259. [40]Laptev, I., Zahn, P., & Pritschow, G. (2015), Direct sliding mode current control of feed drives, CIRP Annals, Vol.64, No.1, pp.373–376. [41]Altintas, Y., & Cao, Y. (2005), Virtual Design and Optimization of Machine Tool Spindles, CIRP Annals, Vo.54, No.1, pp.379–382. [42]Eguia, J., Uriarte, L., & Lamikiz, A. (2016), Analysis optimization and accuracy assessment of special-purpose portable machines by virtual techniques, International Journal of Machine Tools and Manufacture, Vol.111, pp.31–42. [43]Azari Nejat, A., Moghadasi, A., & Held, A. (2020), Adjoint sensitivity analysis of flexible multibody systems in differential-algebraic form. Computers & Structures, 228, 106148. [44]Bratland, M., Haugen, B., & Rølvåg, T. (2011), Modal analysis of active flexible multibody systems, Computers & Structures, Vol.89, No.9-10, 750–761. [45]Wu, G., Fan, G., & Guo, J. (2013), Ride comfort evaluation for road vehicle based on rigid-flexible coupling multibody dynamics, Theoretical and Applied Mechanics Letters, Vol. 3, No.1, 013004. [46]Lee, J.-H. (1996), On the application of the modal integration method to flexible multibody systems, Computers & Structures, Vol.59, No.3, pp.553–559. [47]Bilancia, P., Berselli, G., Bruzzone, L., & Fanghella, P. (2018), A CAD/CAE integration framework for analyzing and designing spatial compliant mechanisms via pseudo-rigid-body methods, Robotics and Computer-Integrated Manufacturing, Vol.55, pp.287-302. [48]Bilancia, P., Berselli, G., Bruzzone, L., & Fanghella, P. (2017), A Practical Method for Determining the Pseudo-rigid-body Parameters of Spatial Compliant Mechanisms via CAE Tools, Procedia Manufacturing, Vol.11, 1709–1717. [49]Zaeh, M., & Siedl, D. (2007), A New Method for Simulation of Machining Performance by Integrating Finite Element and Multi-body Simulation for Machine Tools, CIRP Annals, Vol.56, No.1, pp.383–386. [50]Fukushima, T., Inoue, E., Mitsuoka, M., Sato, K., & Oguri, T. (2018), A simple rubber crawler model for studying fluctuation in crawler tension, Engineering in Agriculture, Environment and Food, Vol.11, No.3, pp.122-126. [51]Altintas, Y., Kersting, P., Biermann, D., Budak, E., Denkena, B., & Lazoglu, I. (2014), Virtual process systems for part machining operations, CIRP Annals, Vol.63, No.2, pp.585–605. [52]THK Catalogue 501T, A15-43 - A15-46. [53]Hiramoto, K., Hansel, A., Ding, S., & Yamazaki, K. (2005), A Study on the Drive at Center of Gravity (DCG) Feed Principle and Its Application for Development of High Performance Machine Tool Systems, CIRP Annals, Vol.54, No.1, pp.333–336. [54]Lu, S. .-Y., Shpitalni, M., & Gadh, R. (1999), Virtual and Augmented Reality Technologies for Product Realization,CIRP Annals, Vol.48, No.2, pp.471–495. [55]Russo, D., & Rizzi, C. (2014), Structural optimization strategies to design green products, Computers in Industry, Vol.65, No.3, pp.470–479. [56]Jayaram, S., Connacher, H. I., & Lyons, K. W. (1997), Virtual assembly using virtual reality techniques, Computer-Aided Design, Vol.29, No.8, pp.575–584. [57]Functionbay RecurDyn, AutoDesign, Basic Theory. [58]https://www.buildinghow.com/en-us/Products/Books/Volume-B/Slabs/Cantilevers-one-way-slabs
|